Офицер информации, знакомый с теорией вероятностей и учитывающий широкую дисперсию внутри данной группы величин, будь то рост людей, дневная температура или точность артиллерийского огня, ясно представляет себе, что, отобрав десять величин из ста, он может случайно столкнуться с крайними или средними для данной группы показателями, например с самым высоким, самым низким или средним ростом людей изучаемой группы Такой разведчик обычно не делает окончательных выводов на основании изучения небольшой выборки без дополнительной работы над проблемой. Он знает, что в информационной работе многие выводы приходится делать на основе выборочного материала. Математическая статистика учит его, каким образом извлекать максимальную пользу из имеющихся выборок, допуская при этом минимум ошибок. Чтобы понимать все это, ему не требуется знать высшую математику.
Удачно избранная средняя величина СРЕДНЕЕ ЗНАЧЕНИЕ, МЕДИАНА, МОДА
$45 ООО
$15000
$10 000
• среднее арифметическое
$ 5 7О0 (или среднее значение)
Го) r S^if)r~l^9
$5000
< СГ > <f л b х (ь % rf^}
Ж JftцOS
$ 3 700
/ вели чина, находящаяся \
I 4-МЕДИAHA I ДS Дe
^ «/2 - после J
$3 000
(Щ1 ЩЩ\1 Щ I наиболее часто \
Ж Ж ilu. Ж I повторяющаяся |
'S 9 000 I сл Уча" ная величина/
Рис. 7. Среднее значение, медиана, мода.
Гор < ГФ < Г ы} ч ^ Ь ( С *>
ВЕРОЯТНОСТЬ И ДОСТОВЕРНОСТЬ
235
Офицер информации знает, что внутри неоднородной группы величин можно обнаружить несколько величин, далеко отстоящих в обоих направлениях от среднего для данной группы показателя. Например, среди группы студентов могут встретиться один-два чрезвычайно способных или крайне тупых студента. Из большого количества артиллерийских снарядов, выпущенных по одной цели, один или два без всякой видимой причины упадут с большим перелетом или недолетом В любой политической организации, религиозном или ином движении можно обнаружить небольшое количество фанатиков, взгляды которых все считают слишком крайними и поэтому неразумными. Можно сказать, что нормальным является такое положение, когда несколько процентов крайних для данной группы величин являются анормальными для группы в целом.
Степень отклонения крайних величин от среднего для данной группы показателя зависит обычно от трех факторов. Прежде всего она явно зависит от состава данной группы. Допустим, что в США в одном графстве живет 1000 человек в возрасте от 20 до 30 лет Можно предположить, что среди них найдется несколько человек с низким коэффициентом умственного развития. Однако, если взять 1000 человек такого же возраста, получивших недавно степень доктора философии, среди них вы, конечно, не обнаружите такого отклонения от среднего коэффициента умственного развития.
Вторым важным фактором является размер изучаемой выборки или размер группы. Мы удивимся и нам покажется забавным, если среди четырех студентов, живущих в одной комнате общежития, один будет иметь рост 1 м 98 см, а другой только 1 м 52 см. Однако, если взять всех студентов колледжа, то наличие среди них двоих с таким различным ростом ни у кого не вызовет удивления. Говоря другими словами, чем больше размер выборки, тем большей обычно будет амплитуда колебания показателей роста между самым высоким и самым низким. При условии если несколько сравниваемых групп состоят из жителей одного района, самый высокий человек в большой группе, вероятно, окажется выше самого высокого человека в маленькой группе. Точно так же дело будет обстоять с другими крайними величинами. Таким образом, математическая статистика дает
236
ГЛАВА 6
нам простую и весьма полезную формулу, показывающую, что амплитуда колебаний (и, следовательно, величина крайностей) зависит от размера изучаемой выборки.
Третий фактор, определяющий предполагаемую степень отклонения крайних величин от среднего для данной группы или «выборки» показателя и имеющий для нас практическое значение, связан с характером группы или «населения», откуда была взята выборка. Если не требовать особой точности, можно сказать, что некоторые группы людей, артиллерийских снарядов, деталей машин и показателей температуры воздуха за несколько дней характеризует тенденция к единообразию. Другим группам свойственно в значительной мере многообразие и даже неустойчивость величин. С помощью формулы среднего квадратичного отклонения и других параметров математической статистики можно в простой и удобной форме выразить предполагаемые важные различия величин внутри данной группы.
Мы повторяем, что часто решающее значение имеют крайние величины, как самые высокие (максимальная нагрузка), так и самые низкие (самое слабое звено цепи).
Человек, знакомый с теорией вероятностей, всегда правильно сумеет оценить значение таких крайних величин. С помощью несложных вычислений он может определить, чего следует ожидать при данных условиях, и соответствующим образом подготовиться. Использование теории вероятностей получает все более широкое распространение в промышленности, естественных науках и в некоторых областях общественных наук. В военном деле — в артиллерии — давно применяется понятие «вероятная ошибка». Теория вероятностей может получить самое широкое применение и в информационной работе стратегической разведки.