"Экспертные системы (ЭС) - это сложные программные комплексы, аккумулирующие знания специалистов в конкретных предметных областях и тиражирующие этот эмпирический опыт для консультаций менее квалифицированных пользователей."
Обобщенная структура экспертной системы представлена на рисунке. Следует учесть, что реальные экспертные системы могут иметь более сложную структуру, однако блоки, изображенные на рисунке, непременно присутствуют в любой действительно экспертной системе, поскольку являют собой негласный канон на структуру современной экспертной системы.
Пользователь - специалист предметной области, для которого предназначена система.
Инженер по знаниям - специалист по искусственному интеллекту, выступающий в роли промежуточного буфера между экспертом и базой знаний.
Интерфейс пользователя - комплекс программ, реализующих диалог пользователя с ЭС как на стадии ввода информации, так и получения результатов.
База знаний (БЗ) - ядро ЭС, совокупность знаний предметной области, записанная на машинный носитель в форме, понятной эксперту и пользователю (обычно на некотором языке, приближенном к естественному).
Решатель - программа, моделирующая ход рассуждений эксперта на основании знаний, имеющихся в БЗ. Синонимы: дедуктивная машина, блок логического вывода.
Подсистема объяснений - программа, позволяющая пользователю получить ответы на вопросы: "Как была получена та или иная рекомендация?" и "Почему система приняла такое решение?"
Интеллектуальный редактор БЗ - программа, представляющая инженеру по знаниям возможность создавать БЗ в диалоговом режиме. Включает в себя систему вложенных меню, шаблонов языка представления знаний, подсказок ("help" - режим) и Других сервисных средств, облегчающих работу с базой.
В коллектив разработчиков ЭС входят как минимум четыре человека:
эксперт;
инженер по знаниям;
программист;
пользователь.
Возглавляет коллектив инженер по знаниям, это ключевая фигура при разработке систем, основанных на знаниях.
Общепринятая классификация экспертных систем отсутствует, однако наиболее часто экспертные системы различают по назначению, предметной области, методам представления знаний, динамичности и сложности:
По назначению классификацию экспертных систем можно провести следующим образом:
· диагностика состояния систем, в том числе мониторинг (непрерывное отслеживание текущего состояния);
· прогнозирование развития систем на основе моделирования прошлого и настоящего;
· планирование и разработка мероприятий в организационном и технологическом управлении;
· проектирование или выработка четких предписаний по построению объектов, удовлетворяющих поставленным требованиям;
· автоматическое управление (регулирование);
· обучение пользователей и др.
По предметной области наибольшее количество экспертных систем используется в военном деле, геологии, инженерном деле, информатике, космической технике, математике, медицине, метеорологии, промышленности, сельском хозяйстве, управлении процессами, физике, филологии, химии, электронике, юриспруденции.
Классификация экспертных систем по методам представления знаний делит их на традиционные и гибридные. Традиционные экспертные системы используют, в основном, эмпирические модели представления знаний и исчисление предикатов первого порядка. Гибридные экспертные системы используют все доступные методы, в том числе оптимизационные алгоритмы и концепции баз данных.
По степени сложности экспертные системы делят на поверхностные и глубинные. Поверхностные экспертные системы представляют знания в виде правил «ЕСЛИ-ТО». Условием выводимости решения является безобрывность цепочки правил. Глубинные экспертные системы обладают способностью при обрыве цепочки правил определять (на основе метазнаний) какие действия следует предпринять для продолжения решения задачи. Кроме того, к сложным относятся предметные области в которых текст записи одного правила на естественном языке занимает более 1/3 страницы.
Классификация экспертных систем по динамичности делит экспертные системы на статические и динамические. Предметная область называется статической, если описывающие ее исходные данные не изменяются во времени. Статичность области означает неизменность описывающих ее исходных данных. При этом производные данные (выводимые из исходных) могут и появляться заново, и изменяться (не изменяя, однако, исходных данных).
Если исходные данные, описывающие предметную область, изменяются за время решения задачи, то предметную область называют динамической. В архитектуру динамической экспертной системы, по сравнению со статической, вводятся два компонента:
· подсистема моделирования внешнего мира;
· подсистема связи с внешним окружением.
Последняя осуществляет связи с внешним миром через систему датчиков и контроллеров. Кроме того, традиционные компоненты статической экспертной системы (база знаний и механизм логического вывода) претерпевают существенные изменения, чтобы отразить временную логику происходящих в реальном мире событий.