Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Билет 5. Химический состав клетки.

В состав клетки входит около 70 хи­мических элементов периодической системы Д. И. Менделеева. В жи­вотной клетке около 98 % массы составляют четыре элемента: водо­род, кислород, углерод и азот, которые относят к макроэлементам. Ниже приведен химический состав животной клетки, % общей мас­сы клетки:

Кроме макроэлементов в клетке присутствуют элементы в деся­тых и сотых долях процента: натрий, калий, кальций, хлор, фосфор, сера, железо и магний — макро-микроэлементы. Каждый из них выполняет важную функцию в клетке. Например, ионы натрия, ка­лия и хлора обеспечивают проницаемость клеточных мембран для различных веществ и проведение импульса по нервному волокну. Кальций и фосфор участвуют в формировании костной ткани, кро­ме того, кальций принимает участие в свертывании крови. Железо входит в состав гемоглобина эритроцитов, магний содержится в ряде ферментов.

Остальные элементы (цинк, медь, йод, фтор и др.) содержатся в очень малых количествах — в общей сложности до 0,02 % — микро­элементы. В специализированных клетках они участвуют в образо­вании биологически активных веществ: цинк входит в состав гормо­на поджелудочной железы — инсулина; йод — компонент гормонов щитовидной железы. Большинство металлов-микроэлементов входят в состав различных ферментов. Все химические элементы находят­ся в организме в виде ионов или входят в состав различных неорга­нических и органических соединений.

 

Есть нуклеиновые кислоты = дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК).

ДНК (дезоксирибонуклеиновая кислота) – это макромолекула, которая хранит в себе и передает из поколения в поколение наследственную информацию. В клетках же основная функция молекулы ДНК – это сохранение точной информации о строении белков и РНК.

        Расположение нуклеотидов в различной последовательности позволяет кодировать индивидуальный генетический код. РНК бывают трёх видов: и-РНК – отвечает за передачу информации, р-РНК – является составляющей рибосом, т-РНК – отвечает за доставку аминокислот к рибосомам. Они обеспечивают синтез белков.

Обмен веществ в клетке

Клетка обладает основными жизненными свойствами: обменом веществ, чувствительностью и способностью к размножению. Клетка многоклеточного организма живет в среде, которую называют внутренней средой организма. К ней относятся кровь, лимфа и тканевая жидкость. Из этой среды через оболочку в клетку поступают вещества, из которых строится тело клетки, неорганические соли, вода, витамины, гормоны и кислород, необходимый для одного из основных энергетических процессов в клетке - окисления. Второй энергетический процесс в клетке - гликолиз (гидролитическое расщепление углеводов) - протекает без участия кислорода. Из клетки через оболочку выводятся продукты ее жизнедеятельности. Проницаемость оболочки клетки избирательна и меняется под влиянием различных факторов. Нормальная жизнедеятельность клетки осуществляется при определенной концентрации солей в окружающей среде (осмотическое давление). Для клеток человека и млекопитающих эта концентрация равна приблизительно 0,9 % (концентрация изотонического раствора хлорида натрия). При повышении концентрации солей (гипертоническая среда) вода выходит из клетки и клетка сжимается, при понижении (гипотоническая среда) вода устремляется в клетку и происходит ее набухание. Клетка может захватывать также крупные частицы (бактерии, фрагменты клеток) путем фагоцитоза, а макромолекулы и растворы - путем пиноцитоза. Фагоцитоз, или внутриклеточное пищеварение, был впервые описан И. И. Мечниковым. Он заключается в захвате частиц выростами цитоплазмы - псевдоподиями (ложноножки). Поступившие в клетку частицы подвергаются действию ферментов. Особые клетки соединительной ткани, обладающие способностью к фагоцитозу, макрофаги - выводят из тканей конечные продукты распада и вещества, попавшие с пищей или через кожу. Одним из основных проявлений жизнедеятельности клеток является секреция. Выделяемые клетками слизеподобные вещества (муцин и мукоиды) защищают ткани от механических повреждений и участвуют в формировании межклеточного вещества. Белковые секреты, к которым относятся пищеварительные ферменты и некоторые гормоны, участвуют в обмене веществ в организме.

Свойства клетки

отвечать специфическими проявлениями жизнедеятельности на воздействие внешней среды называется раздражимостью. Мышечная, нервная и железистая ткани обладают высшей степенью раздражимости - возбудимостью. В нервной, мышечной и железистой тканях в ответ на раздражение возникает возбуждение.

Движение клеток может осуществляться различно. Наиболее распространенным является амебоидный вид движения: образуются выпячивания - ложноножки, направленные в сторону движения. Такой вид подвижности свойствен белым кровяным клеткам - лейкоцитам и блуждающим клеткам соединительной ткани - макрофагам (гистиоциты). При регенерации (восстановление) тканей способность к такому виду движения приобретают почти все клетки животных и человека. Второй вид движения - скользящий - осуществляется без образования ложноножек. Такой вид движения отмечается у клеток соединительной ткани - фибробластов. Более высокая скорость движения достигается при помощи выростов тела клетки - жгутиков, или ресничек. У человека жгутиковый тип движения сохранился у мужских половых клеток - сперматозоонов (спермий).

   Все клетки многоклеточных животных и человека обладают способностью расти. Для большинства клеток нашего тела характерно постоянство размеров в течение всей жизни. При различных патологических процессах возможно увеличение размера клеток - гипертрофия.

Билет 6. Деление клеток

Деление клеток в животном организме бывает трех видов: непрямое (митоз, кариокинез), мейоз (при образовании половых клеток) и прямое (амитоз). Непрямое, митотическое, деление клеток совершается сходно в клетках растительных и животных организмов. Оно обеспечивает равномерное распределение ядерного вещества (хроматина) между двумя дочерними клетками. Это достигается тем, что к началу деления весь хроматин ядра концентрируется в особых структурах - хромосомах, которые затем расщепляются на две половины. Половины хромосом расходятся по двум дочерним клеткам и формируют хроматин их ядер.

1. В митотическом делении выделяют четыре фазы: профазу, метафазу, анафазу и телофазу. Профаза характеризуется формированием в ядре хромосом в виде палочковидных или округлых телец. Клеточный центр увеличивается в размерах и локализуется около ядра. Его центриоли удаляются друг от друга и располагаются на периферии центросферы. Профаза заканчивается формированием хромосом и исчезновением ядрышка. В метафазе происходят расщепление хромосом, исчезновение ядерной оболочки, в результате чего хромосомы свободно лежат в цитоплазме. Клеточный центр превращается в веретенообразную фигуру (веретено деления), располагающуюся вдоль оси клетки, перпендикулярно плоскости ее будущего деления. Хромосомы образуют на экваторе веретена так называемую экваториальную пластинку, занимающую плоскость будущего деления клетки. Метафаза заканчивается появлением на каждой хромосоме продольной щели. В анафазе дочерние хромосомы, возникшие при расщеплении материнских хромосом, расходятся к полюсам - центриолям веретена, образуя два одинаковых комплекса. В телофазе формируются дочерние ядра и происходит деление тела клетки путем истончения центральной части клетки в плоскости, где располагается экваториальная пластинка.

2.Непрямое деление включает, кроме ядерных преобразований, ряд изменений в цитоплазме клетки, в частности в ее органеллах. Длительность митоза различна для разных видов клеток и может продолжаться от 30 мин до 3 ч.

3.Мейоз – это особый способ деления эукариотических клеток, при котором исходное число хромосом уменьшается в два раза (от древнегреч. «мейон» – меньше – и от «мейозис» – уменьшение).

Главной особенностью мейоза является конъюгация (спаривание) гомологичных хромосом с последующим расхождением их в разные клетки.

Мейоз состоит из двух последовательных клеточных делений, которые соответственно называются мейоз I и мейоз II. В первом делении происходит уменьшение числа хромосом в два раза, поэтому его называют редукционным. Во втором делении число хромосом не изменяется; поэтому его называют эквационным (уравнивающим). Первое деление:

    Профаза I (профаза первого деления) включает ряд стадий.

Лептотена (стадия тонких нитей). Хромосомы видны в световой микроскоп в виде клубка тонких нитей.

Зиготена (стадия сливающихся нитей). Происходит конъюгация гомологичных хромосом (от лат. conjugatio – соединение, спаривание, временное слияние). Гомологичные хромосомы (или гомологи) – это парные хромосомы, сходные между собой в морфологическом и генетическом отношении. В результате конъюгации образуются биваленты. Бивалент – это относительно устойчивый комплекс из двух гомологичных хромосом. Гомологи удерживаются друг около друга с помощью белковых синаптонемальных комплексов. Количество бивалентов равно гаплоидному числу хромосом. Иначе биваленты называются тетрады, так как в состав каждого бивалента входит 4 хроматиды.

Пахитена (стадия толстых нитей). Хромосомы спирализуются, хорошо видна их продольная неоднородность. Завершается репликация ДНК. Завершается кроссинговер – перекрест хромосом, в результате которого они обмениваются участками хроматид.

Диплотена (стадия двойных нитей). Гомологичные хромосомы в бивалентах отталкиваются друг от друга. Они соединены в отдельных точках, которые называются хиазмы (от древнегреч. буквы χ – «хи»).

Диакинез (стадия расхождения бивалентов). Хиазмы перемещаются к теломерным участкам хромосом. Биваленты располагаются на периферии ядра. В конце профазы I ядерная оболочка разрушается, и биваленты выходят в цитоплазму.

Метафаза I (метафаза первого деления). Формируется веретено деления. Биваленты перемещаются в экваториальную плоскость клетки. Образуется метафазная пластинка из бивалентов.

Анафаза I (анафаза первого деления). Гомологичные хромосомы, входящие в состав каждого бивалента, разъединяются, и каждая хромосома движется в сторону ближайшего полюса клетки. Разъединения хромосом на хроматиды не происходит.

Телофаза I (телофаза первого деления). Гомологичные двухроматидные хромосомы полностью расходятся к полюсам клетки. В норме каждая дочерняя клетка получает одну гомологичную хромосому из каждой пары гомологов. Формируются два гаплоидных ядра, которые содержат в два раза меньше хромосом, чем ядро исходной диплоидной клетки. Каждое гаплоидное ядро содержит только один хромосомный набор, то есть каждая хромосома представлена только одним гомологом. Содержание ДНК в дочерних клетках составляет 2с.

В большинстве случаев (но не всегда) телофаза I сопровождается цитокинезом.

После первого деления мейоза наступает интеркинез – короткий промежуток между двумя мейотическими делениями. Интеркинез отличается от интерфазы тем, что не происходит репликации ДНК, удвоения хромосом и удвоения центриолей: эти процессы произошли в предмейотической интерфазе и, частично, в профазе I.

Второе деление мейоза (эквационное, или мейоз II)

В ходе второго деления мейоза уменьшения числа хромосом не происходит. Сущность эквационного деления заключается в образовании четырех гаплоидных клеток с однохроматидными хромосомами (в состав каждой хромосомы входит одна хроматида).

Профаза II (профаза второго деления). Не отличается существенно от профазы митоза. Хромосомы видны в световой микроскоп в виде тонких нитей. В каждой из дочерних клеток формируется веретено деления.

Метафаза II (метафаза второго деления). Хромосомы располагаются в экваториальных плоскостях гаплоидных клеток независимо друг от друга. Эти экваториальные плоскости могут быть параллельны друг другу или взаимно перпендикулярны.

Анафаза II (анафаза второго деления). Хромосомы разделяются на хроматиды (как при митозе). Получившиеся однохроматидные хромосомы в составе анафазных групп перемещаются к полюсам клеток.

Телофаза II (телофаза второго деления). Однохроматидные хромосомы полностью переместились к полюсам клетки, формируются ядра. Содержание ДНК в каждой из клеток становится минимальным и составляет 1с.

Таким образом, в результате описанной схемы мейоза из одной диплоидной клетки образуется четыре гаплоидные клетки. Дальнейшая судьба этих клеток зависит от таксономической принадлежности организмов, от пола особи и ряда других факторов.

Типы мейоза. При зиготном и споровом мейозе образовавшиеся гаплоидные клетки дают начало спорам (зооспорам). Эти типы мейоза характерны для низших эукариот, грибов и растений. Зиготный и споровый мейоз тесно связан со спорогенезом. При гаметном мейозе из образовавшихся гаплоидных клеток образуются гаметы. Этот тип мейоза характерен для животных. Гаметный мейоз тесно связан с гаметогенезом и оплодотворением. Таким образом, мейоз – это цитологическая основа полового и бесполого (спорового) размножения.

Биологическое значение мейоза. Немецкий биолог Август Вайсман (1887) теоретически обосновал необходимость мейоза как механизма поддержания постоянного числа хромосом. Поскольку при оплодотворении ядра половых клеток сливаются (и, тем самым, в одном ядре объединяются хромосомы этих ядер), и поскольку число хромосом в соматических клетках остается константным, то постоянному удвоению числа хромосом при последовательных оплодотворениях должен противостоять процесс, приводящий к сокращению их числа в гаметах ровно вдвое. Таким образом, биологическое значение мейоза заключается в поддержании постоянства числа хромосом при наличии полового процесса. Мейоз обеспечивает также комбинативную изменчивость – появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.

 

ОСНОВЫ ГИСТОЛОГИИ

 

Билет7

1. Эпителиальные ткани

                  

 

 

Железы

Железы выполняют в организме секреторную функцию. Выделяемые ими вещества имеют значение для процессов, протекающих в организме. Часть желез является самостоятельными органами (например, околоушная слюнная железа, поджелудочная железа), другие входят в состав органов (например, железы стенки желудка). Большинство желез - производные эпителия. Различают железы внешней секреции - экзокринные и железы внутренней секреции - эндокринные, не имеющие протоков и выделяющие гормоны непосредственно в кровь.

Эндокринные железы участвуют в регуляции процессов, протекающих в органах и тканях. Железы внешней секреции выделяют секрет в различные полости (например, в полость желудка, кишки и др.) или на поверхность кожи. Экзокринные железы выполняют различные функции в зависимости от того, в состав каких органов и систем они входят. Например, железы пищеварительного тракта выделяют секрет, необходимый для процессов пищеварения. Эти железы отличаются друг от друга местом расположения, строением, типом секреции (способ образования секрета) и составом секрета.

Экзокринные железы очень разнообразны, большинство из них многоклеточные. Одноклеточные железы (бокаловидные клетки) расположены в эпителии дыхательных путей и кишечника и вырабатывают слизь. В многоклеточных железах различают секреторный отдел и выводной проток. Секреторный отдел состоит из клеток, вырабатывающих секрет (гландулоциты). В зависимости от того, ветвятся или нет их выводные протоки, выделяют сложные и простые железы. По форме секреторного отдела различают трубчатые, альвеолярные и трубчато-альвеолярные железы.

На основании того, как образуется секрет и каким путем он выделяется из клеток, различают мерокринные, апокринные и голокринные железы.

Мерокринные железы (наиболее часто встречающиеся) выделяют секрет в выводной проток без разрушения цитоплазмы секреторных клеток.

Апокринные железы характеризуются частичным разрушением цитоплазмы секреторных клеток. В процессе секреции апикальная часть клетки разрушается и входит в состав секрета. В последующие стадии разрушенная клетка восстанавливается. Такой тип секреции характерен для молочных и некоторых потовых желез.

В голокринных железах выделение секрета сопровождается гибелью клеток. Разрушенные клетки являются секретом железы. У человека такого рода железами являются сальные. По характеру секрета различают железы слизистые, белковые, смешанные (белково-слизистые) и сальные.

 

 



<== предыдущая лекция | следующая лекция ==>
К лекции 1. Основы цитологии | Соединительные ткани Билет 8
Поделиться с друзьями:


Дата добавления: 2018-10-18; Мы поможем в написании ваших работ!; просмотров: 386 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинайте делать все, что вы можете сделать – и даже то, о чем можете хотя бы мечтать. В смелости гений, сила и магия. © Иоганн Вольфганг Гете
==> читать все изречения...

2338 - | 2137 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.