Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля.
Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса вещества, следовательно, ионы металла не принимают участия в переносе электрического заряда.
Наиболее убедительное доказательство электронной природы тока в металлах было получено в опытах с инерцией электронов. Идея таких опытов и первые качественные результаты принадлежат русским физикам Л. И. Мандельштаму и Н. Д. Папалекси (1913 г.). В 1916 году американский физик Р. Толмен и шотландский физик Б. Стюарт усовершенствовали методику этих опытов и выполнили количественные измерения, неопровержимо доказавшие, что ток в металлических проводниках обусловлен движением электронов. Схема опыта Толмена и Стюарта показана на рис. 1. Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру Г. Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся по отбросу стрелки гальванометра.
|
| Рисунок 1. Схема опыта Толмена и Стюарта. |
При торможении вращающейся катушки на каждый носитель заряда e действует тормозящая сила
которая играет роль сторонней силы, то есть силы неэлектрического происхождения. Сторонняя сила, отнесенная к единице заряда, по определению является напряженностью Eст поля сторонних сил:
|
Следовательно, в цепи при торможении катушки возникает электродвижущая сила
, равная
|
где l – длина проволоки катушки. За время торможения катушки по цепи протечет заряд q, равный
|
Здесь I – мгновенное значение силы тока в катушке, R – полное сопротивление цепи, v0 – начальная линейная скорость проволоки. Отсюда удельный заряд e / m свободных носителей тока в металлах равен:
|
Все величины, входящие в правую часть этого соотношения, можно измерить. На основании результатов опытов Толмена и Стюарта было установлено, что носители свободного заряда в металлах имеют отрицательный знак, а отношение заряда носителя к его массе близко к удельному заряду электрона, полученному из других опытов. Так было установлено, что носителями свободных зарядов в металлах являются электроны. По современным данным модуль заряда электрона (элементарный заряд) равен
|
а его удельный заряд есть
|
Хорошая электропроводность металлов объясняется высокой концентрацией свободных электронов, равной по порядку величины числу атомов в единице объема. Предположение о том, что за электрический ток в металлах ответственны электроны, возникло значительно раньше опытов Толмена и Стюарта. Еще в 1900 году немецкий ученый П. Друде на основе гипотезы о существовании свободных электронов в металлах создал электронную теорию проводимости металлов. Эта теория получила развитие в работах голландского физика Х. Лоренца и носит название классической электронной теории. Согласно этой теории, электроны в металлах ведут себя как электронный газ, во многом похожий на идеальный газ. Электронный газ заполняет пространство между ионами, образующими кристаллическую решетку металла (рис. 2).
|
| Рисунок 2. Газ свободных электронов в кристаллической решетке металла. Показана траектория одного из электронов. |
Из-за взаимодействия с ионами электроны могут покинуть металл, лишь преодолев так называемый потенциальный барьер. Высота этого барьера называется работой выхода. При обычных (комнатных) температурах у электронов не хватает энергии для преодоления потенциального барьера. Как ионы, образующие решетку, так и электроны участвуют в тепловом движении. Ионы совершают тепловые колебания вблизи положений равновесия – узлов кристаллической решетки. Свободные электроны движутся хаотично и при своем движении сталкиваются с ионами решетки. В результате таких столкновений устанавливается термодинамическое равновесие между электронным газом и решеткой. Согласно теории Друде–Лоренца, электроны обладают такой же средней энергией теплового движения, как и молекулы одноатомного идеального газа. Это позволяет оценить среднюю скорость
теплового движения электронов по формулам молекулярно-кинетической теории.
При комнатной температуре она оказывается примерно равной 105 м/с. При наложении внешнего электрического поля в металлическом проводнике кроме теплового движения электронов возникает их упорядоченное движение (дрейф), то есть электрический ток. Среднюю скорость
дрейфа можно оценить из следующих соображений. За интервал времени Δt через поперечное сечение S проводника пройдут все электроны, находившиеся в объеме
Число таких электронов равно
где n – средняя концентрация свободных электронов, примерно равная числу атомов в единице объема металлического проводника. Через сечение проводника за время Δt пройдет заряд
Отсюда следует:
|
или
|
http://www.youtube.com/watch?v=1_Ix66wtP_E полупроводники
Электрическое сопротивление, проводимость.
Проводники и диэлектрики
Проводники
К проводникам относятся все металлы и их сплавы, а также электротехнический уголь(каменный уголь, графит, сажа, смола и т.д.)
К жидким проводникам относятся:вода, раствор солей, кислот и щелочей.
К газообразным относятся ионизированные газы.
Электрический ток в твердых проводниках-это направленное движение свободных электронов под действием ЭДС.
ЭДС-электронно-движущая сила.
Обладают очень большой электропроводностью. Проводники делятся на две группы.
К проводникам первой группе относятся металлы (медь, алюминий, серебро и т.д.) и их сплавы, в которых возможно перемещение только электронов. То есть в металлах электроны очень слабо связаны с ядрами атомов и легко от них отделяются. В металлах явление электрического тока связано с движением свободных электронов, которые обладают очень большой подвижностью и находятся в состоянии теплового движения. Эту электропроводность называют электронной. Проводники используются для изготовления проводов, ЛЭП, обмоток электрических машин и т.п.. К проводникам второй группе относятся водные растворы солей, кислот и т.д., которые называют электролитами. Под действием раствора молекулы вещества распадаются на положительные и отрицательные ионы, которые под действием электрического поля начнут перемещаться. Ионы электролита при прохождении тока начнут осаждатися на электродах, опущенных в электролит. Процесс выделения вещества из электролитов электрическим током называется электролизом. Его используют для добычи цветных металлов из растворов их соединений (медь, алюминий), а также для покрытия металлов защитным слоем другого металла (например, хромирование).
Свойства проводников:
Электрические
o Удельное сопротивление веществ от которого зависит электропроводимость
o Сверхпроводимость-это свойство некоторых материалов при температуре равной 101(-273) проводить эл.ток без препятствий, т.е. удельное сопротивление этих материалов равно нулю
Физические
o плотность
o температура плавления
Механические
o Прочность на изгиб, растяжение и т.д., а также способность обрабатываться на станках
Химические
o Свойства взаимодействовать с окружающей или противостоять коррозии
o Свойства соединятся при помощи пайки, сварки
Диэлектрики
Не пропускают электрический ток.Диэлектрики обладают высоким удельным сопротивлением.Используются для защиты проводника от влаги, механических повреждений, пыли.
Диэлектрики бывают
- твердые-все неметаллы;
- жидкие-масла, синтетические жидкости СОВОЛ, СОВТОЛ
- газообразные-все газы:воздух, кислород, азот и т.д.
Полупроводники
Полупроводниковые (германий, селен, кремний). Это вещества, которые кроме электронной проводимости, имеют «дырочную» проводимость, которая в большой степени зависит от наличия внешних факторов: света, температуры, электрического или магнитного поля. Эти вещества имеют ковалентную связь (- это химическая связь между двумя электронами соседних атомов на одной орбите). Ковалентная связь очень непрочен. При наличии внешнего фактора он разрушается и появляются свободные электроны (электронная проводимость). В момент образования свободного электрона в ковалентной связи появляется свободный город - «электрона дыра» (эквивалентная протона), которая притягивает к себе электрон из соседнего ковалентной связи. Но тогда образуется новая «дыра», которая вновь притягивает к себе электрон из соседнего ковалентной связи и так далее. Т.е. под действием электрического поля перемещаются «дыры» в направлении поля (навстречу электронам) - движение протонов. Таким образом, при электронной проводимости - электрон проходит весь путь, а при «дырочной» - электроны поочередно замещаются по связям, каждый электрон проходит долю пути. При нарушении связей в полупроводниках одновременно возникает одинаковое количество электронов и «дырок». То есть, проводимость состоит из электронной и «дырочной» и называется собственной проводимостью полупроводника. Свойства полупроводников возможно изменить, если в них внести примеси других веществ. Тем самым увеличить ту или иную проводимость. Это используется в промышленной электронике: диоды, транзисторы, тиристоры. Используют, как усилители, выпрямители, электронные генераторы, стабилизаторы и тому подобное. Их преимущества: малая потеря энергии, стоимость, размер и масса, простота эксплуатации, большой срок работы. Недостаток: зависимость проводимости от температуры.
Свойства диэлектриков:
Электрические свойства
o Электрический пробой-устанавление большого тока, под действием высокого электрического напряжения к электроиоляционному материалу определенной толщины.
o Электрическая прочность-это величина, равная напряжению, при котором может быть пробит электроизоляционному материал толщиной в единицу длины.






