К У Р С
В Ы С Ш Е Й
М А Т Е М А Т И К И
Краткий конспект лекций
ЧАСТЬ 4
2000
Теория вероятностей.
Основные понятия.
Определение. Событием называется всякий факт, который может произойти или не произойти в результате опыта.
При этом тот или иной результат опыта может быть получен с различной степенью возможности. Т.е. в некоторых случаях можно сказать, что одно событие произойдет практически наверняка, другое практически никогда.
В отношении друг друга события также имеют особенности, т.е. в одном случае событие А может произойти совместно с событием В, в другом – нет.
Определение. События называются несовместными, если появление одного из них исключает появление других.
Классическим примером несовместных событий является результат подбрасывания монеты – выпадение лицевой стороны монеты исключает выпадение обратной стороны (в одном и том же опыте).
Определение. Полной группой событий называется совокупность всех возможных результатов опыта.
Определение. Достоверным событием называется событие, которое наверняка произойдет в результате опыта. Событие называется невозможным, если оно никогда не произойдет в результате опыта.
Например, если из коробки, содержащей только красные и зеленые шары, наугад вынимают один шар, то появление среди вынутых шаров белого – невозможное событие. Появление красного и появление зеленого шаров образуют полную группу событий.
Определение. События называются равновозможными, если нет оснований считать, что одно из них появится в результате опыта с большей вероятностью.
В приведенном выше примере появление красного и зеленого шаров – равновозможные события, если в коробке находится одинаковое количество красных и зеленых шаров.
Если же в коробке красных шаров больше, чем зеленых, то появление зеленого шара – событие менее вероятное, чем появление красного.
Исходя из этих общих понятий можно дать определение вероятности.
Определение. Вероятностью события А называется математическая оценка возможности появления этого события в результате опыта. Вероятность события А равна отношению числа, благоприятствующих событию А исходов опыта к общему числу попарно несовместных исходов опыта, образующих полную группу событий.
Исход опыта является благоприятствующим событию А, если появление в результате опыта этого исхода влечет за собой появление события А.
Очевидно, что вероятность достоверного события равна единице, а вероятность невозможного – равна нулю. Таким образом, значение вероятности любого события – есть положительное число, заключенное между нулем и единицей.
Пример. В коробке находится 10 шаров. 3 из них красные, 2 – зеленые, остальные белые. Найти вероятность того, что вынутый наугад шар будет красным, зеленым или белым.
Появление красного, зеленого и белого шаров составляют полную группу событий. Обозначим появление красного шара – событие А, появление зеленого – событие В, появление белого – событие С.
Тогда в соответствием с записанными выше формулами получаем:
Отметим, что вероятность наступления одного из двух попарно несовместных событий равна сумме вероятностей этих событий.
Определение. Относительной частотой события А называется отношение числа опытов, в результате которых произошло событие А к общему числу опытов.
Отличие относительной частоты от вероятности заключается в том, что вероятность вычисляется без непосредственного произведения опытов, а относительная частота – после опыта.
Так в рассмотренном выше примере, если из коробки наугад извлечено 5 шаров и 2 из них оказались красными, то относительная частота появления красного шара равна:
Как видно, эта величина не совпадает с найденной вероятностью.
При достаточно большом числе произведенных опытов относительная частота изменяется мало, колеблясь около одного числа. Это число может быть принято за вероятность события.
Вообще говоря, классическое определение вероятности – довольно относительное.
Это обусловлено тем, что на практике сложно представить результат опыта в виде совокупности элементарных событий, доказать, что события равновероятные.
К примеру при произведении опыта с подбрасыванием монеты на результат опыта могут влиять такие факторы как несимметричность монеты, влияние ее формы на аэродинамические характеристики полета, атмосферные условия и т.д.
Классическое определение вероятности неприменимо к испытаниям с бесконечным числом исходов. Чтобы преодолеть этот недостаток вводится понятие геометрической вероятности, т.е. вероятности попадания точки в какой – либо отрезок или часть плоскости (пространства).
Так если на отрезке длиной L выделен отрезок длины l, то вероятность попадания наугад взятой точки в отрезок l равна отношению l / L.
Операции над событиями.
Определение. События А и В называются равными, если осуществление события А влечет за собой осуществление события В и наоборот.
Определение. Объединением или суммой событий А k называется событие A, которое означает появление хотя бы одного из событий А k.
Определение. Пересечением или произведением событий Ak называется событие А, которое заключается в осуществлении всех событий Ak.
Определение. Разностью событий А и В называется событие С, которое означает, что происходит событие А, но не происходит событие В.
Определение. Дополнительным к событию А называется событие , означающее, что событие А не происходит.
Определение. Элементарными исходами опыта называются такие результаты опыта, которые взаимно исключают друг друга и в результате опыта происходит одно из этих событий, также каково бы ни было событие А, по наступившему элементарному исходу можно судить о том, происходит или не происходит это событие.
Совокупность всех элементарных исходов опыта называется пространством элементарных событий.
Теорема (сложения вероятностей). Вероятность суммы двух несовместных событий равна сумме вероятностей этих событий.
Следствие 1: Если события образуют полную группу несовместных событий, то сумма их вероятностей равна единице.
Определение. Противоположными называются два несовместных события, образующие полную группу.
Теорема. Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления.
Следствие 2: Сумма вероятностей противоположных событий равна единице.
Определение. Событие А называется независимым от события В, вероятность события А не зависит от того, произошло событие В или нет. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.
Определение. Вероятность события В, вычисленная при условии, что имело место событие А, называется условной вероятностью события В.
Теорема. (Умножения вероятностей) Вероятность произведения двух событий (совместного появления этих событий) равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое событие уже наступило.
Также можно записать:
Доказательство этой теоремы непосредственно вытекает из определения условной вероятности.
Если события независимые, то , и теорема умножения вероятностей принимает вид:
В случае произведения нескольких зависимых событий вероятность равна произведению одного из них на условные вероятности всех остальных при условии, что вероятность каждого последующего вычисляется в предположении, что все остальные события уже совершились.
Из теоремы произведения вероятностей можно сделать вывод о вероятности появления хотя бы одного события.
Если в результате испытания может появиться п событий, независимых в совокупности, то вероятность появления хотя бы одного из них равна
Здесь событие А обозначает наступление хотя бы одного из событий Ai, а qi – вероятность противоположных событий .
Пример. Из полной колоды карт (52 шт.) одновременно вынимают четыре карты. Найти вероятность того, что среди этих четырех карт будет хотя бы одна бубновая или одна червонная карта.
Обозначим появление хотя бы одной бубновой карты – событие А, появление хотя бы одной червонной карты – событие В. Таким образом нам надо определить вероятность события С = А + В.
Кроме того, события А и В – совместны, т.е. появление одного из них не исключает появления другого.
Всего в колоде 13 червонных и 13 бубновых карт.
При вытаскивании первой карты вероятность того, что не появится ни червонной ни бубновой карты равна , при вытаскивании второй карты - , третьей - , четвертой - .
Тогда вероятность того, что среди вынутых карт не будет ни бубновых, ни червонных равна .
Тогда
Пример. Чему равна вероятность того, что при бросании трех игральных костей 6 очков появится хотя бы на одной из костей?
Вероятность выпадения 6 очков при одном броске кости равна . Вероятность того, что не выпадет 6 очков - . Вероятность того, что при броске трех костей не выпадет ни разу 6 очков равна .
Тогда вероятность того, что хотя бы один раз выпадет 6 очков равна .
Пример. В барабане револьвера находятся 4 патрона из шести в произвольном порядке. Барабан раскручивают, после чего нажимают на спусковой крючок два раза. Найти вероятности хотя бы одного выстрела, двух выстрелов, двух осечек.
Вероятность выстрела при первом нажатии на курок (событие А) равна , вероятность осечки - Вероятность выстрела при втором нажатии на курок зависит от результата первого нажатия.
Так если в первом случае произошел выстрел, то в барабане осталось только 3 патрона, причем они распределены по 5 гнездам, т.к. при втором нажатии на курок напротив ствола не может оказаться гнездо, в котором был патрон при первом нажатии на курок.
Условная вероятность выстрела при второй попытке - если в первый раз был выстрел, - если в первый раз произошла осечка.
Условная вероятность осечки во второй раз - , если в первый раз произошел выстрел, - если в первый раз была осечка.
Рассмотрим вероятности того, что во втором случае произойдет выстрел (событие В) или произойдет осечка (событие ) при условии, что в первом случае произошел выстрел (событие А) или осечка (событие ).
- два выстрела подряд
- первая осечка, второй выстрел
- первый выстрел, вторая осечка
- две осечки подряд
Эти четыре случая образуют полную группу событий (сумма их вероятностей равна единице)
Анализируя полученные результаты, видим, что вероятность хотя бы одного выстрела равна сумме
Теперь рассмотрим другой случай. Предположим, что после первого нажатия на курок барабан раскрутили и опять нажали на курок.
Вероятности первого выстрела и первой осечки не изменились - , Условные вероятности второго выстрела и осечки вычисляются из условия, что напротив ствола может оказаться то же гнездо, что и в первый раз.
Условная вероятность выстрела при второй попытке - если в первый раз был выстрел, - если в первый раз произошла осечка.
Условная вероятность осечки во второй раз - , если в первый раз произошел выстрел, - если была осечка.
Тогда:
- два выстрела подряд
- первая осечка, второй выстрел
- первый выстрел, вторая осечка
- две осечки подряд
В этом случае вероятность того, что произойдет хотя бы один выстрел, равна
Ниже показаны диаграммы вероятностей для первого и второго рассмотренных случаев.
Пример. Два стрелка стреляют по мишени. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,7, а для второго – 0,8. Найти вероятность того, что при одном залпе в мишень попадает только один из стрелков.
Обозначим попадание в цель первым стрелком – событие А, вторым – событие В, промах первого стрелка – событие , промах второго – событие .
Вероятность того, что первый стрелок попадет в мишень, а второй – нет равна
Вероятность того, что второй стрелок попадет в цель, а первый – нет равна
Тогда вероятность попадания в цель только одним стрелком равна
Тот же результат можно получить другим способом – находим вероятности того, что оба стрелка попали в цель и оба промахнулись. Эти вероятности соответственно равны:
Тогда вероятность того, что в цель попадет только один стрелок равна:
Пример. Вероятность того, что взятая наугад деталь из некоторой партии деталей, будет бракованной равна 0,2. Найти вероятность того, что из трех взятых деталей 2 окажется не бракованными.
Обозначим бракованную деталь – событие А, не бракованную – событие .
Если среди трех деталей оказывается только одна бракованная, то это возможно в одном из трех случаев: бракованная деталь будет первой, второй или третьей.
Пример. Вероятности того, что нужная деталь находится в первом, втором, третьем или четвертом ящике, соответственно равны 0,6, 0,7, 0,8, 0,9. Найти вероятности того, что эта деталь находится: а) не более, чем в трех ящиках; б) не менее, чем в двух ящиках.
а) Вероятность того, что данная деталь находится во всех четырех ящиках, равна
Вероятность того, что нужная деталь находиться не более, чем в трех ящиках равна вероятности того, что она не находится во всех четырех ящиках.
.
б) Вероятность того, что нужная деталь находится не менее, чем в двух ящиках, складывается из вероятностей того, что деталь находиться только в двух ящиках, только в трех ящиках, только в четырех ящиках. Конечно, эти вероятности можно посчитать, а потом сложить, однако, проще поступить иначе. Та же вероятность равна вероятности того, что деталь не находится только в одном ящике и имеется вообще.
Вероятность того, что деталь находится только в одном ящике, равна
Вероятность того, что нужной деталь нет ни в одном ящике, равна:
Искомая вероятность равна
Формула полной вероятности.
Пусть некоторое событие А может произойти вместе с одним из несовместных событий , составляющих полную группу событий. Пусть известны вероятности этих событий и условные вероятности наступления события А при наступлении события Hi .
Теорема. Вероятность события А, которое может произойти вместе с одним из событий , равна сумме парных произведений вероятностей каждого из этих событий на соответствующие им условные вероятности наступления события А.
Фактически эта формула полной вероятности уже использовалась при решении примеров, приведенных выше, например, в задаче с револьвером.
Доказательство.
Т.к. события образуют полную группу событий, то событие А можно представить в виде следующей суммы:
Т.к. события несовместны, то и события AHi тоже несовместны. Тогда можно применить теорему о сложении вероятностей несовместных событий:
При этом
Окончательно получаем:
Теорема доказана.
Пример. Один из трех стрелков производит два выстрела. Вероятность попадания в цель при одном выстреле для первого стрелка равна 0,4, для второго – 0,6, для третьего – 0,8. Найти вероятность того, что в цель попадут два раза.
Вероятность того, что выстрелы производит первый, второй или третий стрелок равна .
Вероятности того, что один из стрелков, производящих выстрелы, два раза попадает в цель, равны:
- для первого стрелка:
- для второго стрелка:
- для третьего стрелка:
Искомая вероятность равна:
Формула Бейеса. (формула гипотез)
Пусть имеется полная группа несовместных гипотез с известными вероятностями их наступления . Пусть в результате опыта наступило событие А, условные вероятности которого по каждой из гипотез известны, т.е. известны вероятности .
Требуется определить какие вероятности имеют гипотезы относительно события А, т.е. условные вероятности .
Теорема. Вероятность гипотезы после испытания равна произведению вероятности гипотезы до испытания на соответствующую ей условную вероятность события, которое произошло при испытании, деленному на полную вероятность этого события.
Эта формула называется формулой Бейеса.
Доказательство.
По Теореме умножения вероятностей получаем:
Тогда если .
Для нахождения вероятности P(A) используем формулу полной вероятности.
Если до испытания все гипотезы равновероятны с вероятностью , то формула Бейеса принимает вид:
Повторение испытаний.
Формула Бернулли.
Если производится некоторое количество испытаний, в результате которых может произойти или не произойти событие А, и вероятность появления этого события в каждом из испытаний не зависит от результатов остальных испытаний, то такие испытания называются независимыми относительно события А.
Допустим, что событие А наступает в каждом испытании с вероятностью Р(А)=р. Определим вероятность Рт,п того, что в результате п испытаний событие А наступило ровно т раз.
Эту вероятность в принципе можно посчитать, используя теоремы сложения и умножения вероятностей, как это делалось в рассмотренных выше примерах. Однако, при достаточно большом количестве испытаний это приводит к очень большим вычислениям. Таким образом, возникает необходимость разработать общий подход к решению поставленной задачи. Этот подход реализован в формуле Бернулли. (Якоб Бернулли (1654 – 1705) – швейцарский математик)
Пусть в результате п независимых испытаний, проведенных в одинаковых условиях, событие А наступает с вероятностью Р(А) = р, а противоположное ему событие с вероятностью .
Обозначим Ai – наступление события А в испытании с номером i. Т.к. условия проведения опытов одинаковые, то эти вероятности равны.
Если в результате п опытов событие А наступает ровно т раз, то остальные п-т раз это событие не наступает. Событие А может появиться т раз в п испытаниях в различных комбинациях, число которых равно количеству сочетаний из п элементов по т. Это количество сочетаний находится по формуле:
Вероятность каждой комбинации равна произведению вероятностей:
Применяя теорему сложения вероятностей несовместных событий, получаем формулу Бернулли:
Формула Бернулли важна тем, что справедлива для любого количества независимых испытаний, т.е. того самого случая, в котором наиболее четко проявляются законы теории вероятностей.
Пример. По цели производится 5 выстрелов. Вероятность попадания для каждого выстрела равна 0,4. Найти вероятность того, что в цель попали не менее трех раз.
Вероятность не менее трех попаданий складывается из вероятности пяти попаданий, четырех попаданий и трех попаданий.
Т.к. выстрелы независимы, то можно применить формулу Бернулли вероятности того, что в т испытаниях событие в вероятностью р наступает ровно п раз.
В случае пяти попаданий из пяти возможных:
Четыре попадания из пяти выстрелов:
Три попадания из пяти:
Окончательно, получаем вероятность не менее трех попаданий из пяти выстрелов:
Случайные величины.
Выше рассматривались случайные события, являющиеся качественной характеристикой случайного результата опыта. Для получения количественной характеристики вводится понятие случайной величины.
Определение. Случайной величиной называется величина, которая в результате опыта может принимать то или иное значение, причем заранее известно какое именно.
Случайные величины можно разделить на две категории.
Определение. Дискретной случайной величиной называется такая величина, которая в результате опыта может принимать определенные значения с определенной вероятностью, образующие счетное множество (множество, элементы которого могут быть занумерованы).
Это множество может быть как конечным, так и бесконечным.
Например, количество выстрелов до первого попадания в цель является дискретной случайной величиной, т.к. эта величина может принимать и бесконечное, хотя и счетное количество значений.
Определение. Непрерывной случайной величиной называется такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка.
Очевидно, что число возможных значений непрерывной случайной величины бесконечно.
Для задания случайной величины недостаточно просто указать ее значение, необходимо также указать вероятность этого значения.
Закон распределения дискретной случайной величины.
Определение. Соотношение между возможными значениями случайной величины и их вероятностями называется законом распределения дискретной случайной величины.
Закон распределения может быть задан аналитически, в виде таблицы или графически.
Таблица соответствия значений случайной величины и их вероятностей называется рядом распределения.
Графическое представление этой таблицы называется многоугольником распределения. При этом сумма все ординат многоугольника распределения представляет собой вероятность всех возможных значений случайной величины, а, следовательно, равна единице.
Пример. По цели производится 5 выстрелов. Вероятность попадания для каждого выстрела равна 0,4. Найти вероятности числа попаданий и построить многоугольник распределения.
Вероятности пяти попаданий из пяти возможных, четырех из пяти и трех из пяти были найдены выше по формуле Бернулли и равны соответственно:
, ,
Аналогично найдем:
Представим графически зависимость числа попаданий от их вероятностей.
При построении многоугольника распределения надо помнить, что соединение полученных точек носит условный характер. В промежутках между значениями случайной величины вероятность не принимает никакого значения. Точки соединены только для наглядности.
Пример. Вероятность хотя бы одного попадания в мишень стрелком при трех выстрелах равна 0,875. Найти вероятность попадания в мишень при одном выстреле.
Если обозначить р – вероятность попадания стрелком в мишень при одном выстреле, то вероятность промаха при одном выстреле, очевидно, равна (1 – р).
Вероятность трех промахов из трех выстрелов равна (1 – р)3. Эта вероятность равна 1 – 0,875 = 0,125, т.е. в цель не попадают ни одного раза.
Получаем:
Пример. В первой коробке содержится 10 шаров, из них 8 белых; во второй коробке 20 шаров, из них 4 белых. Из каждой коробки наугад извлекли по одному шару, а затем из этих двух шаров наугад берут один шар. Найти вероятность того, что этот шар белый.
Вероятность того, что взятый из первой коробки шар белый - что не белый - .
Вероятность того, что взятый из второй коробки шар белый - что не белый -
Вероятность того, что повторно выбран шар, извлеченный из первой коробки и вероятность того, что повторно выбран шар, извлеченный из второй коробки, равны 0,5.
Вероятность того, что повторно выбран шар, извлеченный из первой коробки, и он белый -
Вероятность того, что повторно выбран шар, извлеченный из второй коробки, и он белый -
Вероятность того, что повторно будет выбран белый шар, равна
Пример. Имеется пять винтовок, три из которых снабжены оптическим прицелом. Вероятность того, что стрелок поразит цель при выстреле из винтовки с оптическим прицелом, равна 0,95, для винтовки без оптического прицела эта вероятность равна 0,7. Найти вероятность того, что цель будет поражена, если стрелок произведет один выстрел из наугад выбранной винтовки.
Вероятность того, что выбрана винтовка с оптическим прицелом, обозначим , а вероятность того, что выбрана винтовка без оптического прицела, обозначим .
Вероятность того, что выбрали винтовку с оптическим прицелом, и при этом цель была поражена , где Р(ПЦ/ O) – вероятность поражения цели из винтовки с оптическим прицелом.
Аналогично, вероятность того, что выбрали винтовку без оптического прицела, и при этом цель была поражена , где Р(ПЦ/Б O) – вероятность поражения цели из винтовки без оптического прицела.
Окончательная вероятность поражения цели равна сумме вероятностей Р1 и Р2, т.к. для поражения цели достаточно, чтобы произошло одно из этих несовместных событий.
Пример. Трое охотников одновременно выстрелили по медведю, который был убит одной пулей. Определить вероятность того, что медведь был убит первым стрелком, если вероятности попадания для этих стрелков равны соответственно 0,3, 0,4, 0,5.
В этой задаче требуется определить вероятность гипотезы уже после того, как событие уже совершилось. Для определения искомой вероятности надо воспользоваться формулой Бейеса. В нашем случае она имеет вид:
В этой формуле Н1, Н2, Н3 – гипотезы, что медведя убьет первый, второй и третий стрелок соответственно. До произведения выстрелов эти гипотезы равновероятны и их вероятность равна .
P (H 1 / A) – вероятность того, что медведя убил первый стрелок при условии, что выстрелы уже произведены (событие А).
Вероятности того, что медведя убьет первый, второй или третий стрелок, вычисленные до выстрелов, равны соответственно:
Здесь q 1 = 0,7; q 2 = 0,6; q 3 = 0,5 – вероятности промаха для каждого из стрелков, рассчитаны как q = 1 – p, где р – вероятности попадания для каждого из стрелков.
Подставим эти значения в формулу Бейеса:
Пример. Последовательно послано четыре радиосигнала. Вероятности приема каждого из них не зависят от того, приняты ли остальные сигналы, или нет. Вероятности приема сигналов равны соответственно 0,2, 0,3, 0,4, 0,5. Определить вероятность приема трех радиосигналов.
Событие приема трех сигналов из четырех возможно в четырех случаях:
Для приема трех сигналов необходимо совершение одного из событий А, В, С или D. Таким образом, находим искомую вероятность:
Пример. Двадцать экзаменационных билетов содержат по два вопроса, которые не повторяются. Экзаменующийся знает ответы только на 35 вопросов. Определить вероятность того, что экзамен будет сдан, если для этого достаточно ответить на два вопроса одного билета или на один вопрос одного билета и на указанный дополнительный вопрос из другого билета.
В общей сложности имеется 40 вопросов (по 2 в каждом из 20 билетов). Вероятность того, что выпадает вопрос, на который ответ известен, очевидно, равна .
Для того, чтобы сдать экзамен, требуется совершение одного из трех событий:
1) Событие A – ответили на первый вопрос (вероятность ) и ответили на второй вопрос (вероятность ). Т.к. после успешного ответа на первый вопрос остается еще 39 вопросов, на 34 из которых ответы известны.
2) Событие В – на первый вопрос ответили (вероятность ), на второй – нет (вероятность ), на третий – ответили (вероятность ).
3) Событие С – на первый вопрос не ответили (вероятность ), на второй – ответили (вероятность ), на третий – ответили (вероятность ).
Вероятность того, что при заданных условиях экзамен будет сдан равна:
Пример. Имеются две партии однородных деталей. Первая партия состоит из 12 деталей, 3 из которых - бракованные. Вторая партия состоит из 15 деталей, 4 из которых – бракованные. Из первой и второй партий извлекают по две детали. Какова вероятность того, что среди них нет бракованных деталей.
Вероятность оказаться не бракованной для первой детали, извлеченной из первой партии, равна , для второй детали, извлеченной из первой партии при условии, что первая деталь была не бракованной - .
Вероятность оказаться не бракованной для первой детали, извлеченной из второй партии, равна , для второй детали, извлеченной из второй партии при условии, что первая деталь была не бракованной - .
Вероятность того, что среди четырех извлеченных деталей нет бракованных, равна:
.
Рассмотрим тот же пример, но несколько с другим условием.
Пример. Имеются две партии однородных деталей. Первая партия состоит из 12 деталей, 3 из которых - бракованные. Вторая партия состоит из 15 деталей, 4 из которых – бракованные. Из первой партии извлекаются наугад 5 деталей, а из второй – 7 деталей. Эти детали образуют новую партию. Какова вероятность достать из них бракованную деталь?
Для того, чтобы выбранная наугад деталь была бы бракованной, необходимо выполнение одного из двух несовместных условий:
1) Выбранная деталь была из первой партии (вероятность - ) и при этом она – бракованная (вероятность - ). Окончательно:
2) Выбранная деталь была из второй партии (вероятность - ) и при этом она – бракованная (вероятность - ). Окончательно:
Окончательно, получаем: .
Пример. В урне 3 белых и 5 черных шаров. Из урны вынимают наугад два шара. Найти вероятность того, что эти шары не одного цвета.
Событие, состоящее в том, что выбранные шары разного цвета произойдет в одном из двух случаев:
1) Первый шар белый (вероятность - ), а второй – черный (вероятность - ).
2) Первый шар черный (вероятность - ), а второй – белый (вероятность - ).
Окончательно получаем:
Биноминальное распределение.
Если производится п независимых испытаний, в каждом из которых событие А может появиться с одинаковой вероятностью р в каждом из испытаний, то вероятность того, что событие не появится, равна q = 1 – p.
Примем число появлений события в каждом из испытаний за некоторую случайную величину Х.
Чтобы найти закон распределения этой случайной величины, необходимо определить значения этой величины и их вероятности.
Значения найти достаточно просто. Очевидно, что в результате п испытаний событие может не появиться вовсе, появиться один раз, два раза, три и т.д. до п раз.
Вероятность каждого значения этой случайной величины можно найти по формуле Бернулли.
Эта формула аналитически выражает искомый закон распределения. Этот закон распределения называется биноминальным.
Пример. В партии 10% нестандартных деталей. Наугад отобраны 4 детали. Написать биноминальный закон распределения дискретной случайной величины Х – числа нестандартных деталей среди четырех отобранных и построить многоугольник полученного распределения.
Вероятность появления нестандартной детали в каждом случае равна 0,1.
Найдем вероятности того, что среди отобранных деталей:
1) Вообще нет нестандартных.
2) Одна нестандартная.
3) Две нестандартные детали.
4) Три нестандартные детали.
5) Четыре нестандартных детали.
Построим многоугольник распределения.
Пример. Две игральные кости одновременно бросают 2 раза. Написать биноминальный закон распределения дискретной случайной величины Х – числа выпадений четного числа очков на двух игральных костях.
Каждая игральная кость имеет три варианта четных очков – 2, 4 и 6 из шести возможных, таким образом, вероятность выпадения четного числа очков на одной кости равна 0,5.
Вероятность одновременного выпадения четных очков на двух костях равна 0,25.
Вероятность того, что при двух испытаниях оба раза выпали четные очки на обеих костях, равна:
Вероятность того, что при двух испытаниях один раз выпали четные очки на обеих костях:
Вероятность того, что при двух испытаниях ни одного раза не выпаде четного числа очков на обеих костях:
Распределение Пуассона.
(Симеон Дени Пуассон (1781 – 1840) – французский математик)
Пусть производится п независимых испытаний, в которых появление события А имеет вероятность р. Если число испытаний п достаточно велико, а вероятность появления события А в каждом испытании мало (p £0,1), то для нахождения вероятности появления события А k раз находится следующим образом.
Сделаем важное допущение – произведение пр сохраняет постоянное значение:
Практически это допущение означает, что среднее число появления события в различных сериях испытаний (при разном п) остается неизменным.
По формуле Бернулли получаем:
Найдем предел этой вероятности при п ®¥.
Получаем формулу распределения Пуассона:
Если известны числа l и k, то значения вероятности можно найти по соответствующим таблицам распределения Пуассона.
Числовые характеристики дискретных случайных величин.
Закон распределения полностью характеризует случайную величину. Однако, когда невозможно найти закон распределения, или этого не требуется, можно ограничиться нахождением значений, называемых числовыми характеристиками случайной величины. Эти величины определяют некоторое среднее значение, вокруг которого группируются значения случайной величины, и степень их разбросанности вокруг этого среднего значения.
Определение. Математическим ожиданием дискретной случайной величины называется сумма произведений всех возможных значений случайной величины на их вероятности.
Математическое ожидание существует, если ряд, стоящий в правой части равенства, сходится абсолютно.
С точки зрения вероятности можно сказать, что математическое ожидание приближенно равно среднему арифметическому наблюдаемых значений случайной величины.
Свойства математического ожидания.
1) Математическое ожидание постоянной величины равно самой постоянной.
2) Постоянный множитель можно выносить за знак математического ожидания.
3) Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.
Это свойство справедливо для произвольного числа случайных величин.
4) Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых.
Это свойство также справедливо для произвольного числа случайных величин.
Пусть производится п независимых испытаний, вероятность появления события А в которых равна р.
Теорема. Математическое ожидание М(Х) числа появления события А в п независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании.
Однако, математическое ожидание не может полностью характеризовать случайный процесс. Кроме математического ожидания надо ввести величину, которая характеризует отклонение значений случайной величины от математического ожидания.
Это отклонение равно разности между случайной величиной и ее математическим ожиданием. При этом математическое ожидание отклонения равно нулю. Это объясняется тем, что одни возможные отклонения положительны, другие отрицательны, и в результате их взаимного погашения получается ноль.
Определение. Дисперсией (рассеиванием) дискретной случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания.
Пример. Для рассмотренного выше примера закон распределения случайной величины имеет вид:
X | 0 | 1 | 2 |
p | 0,0625 | 0,375 | 0,5625 |
Найти математическое ожидание и дисперсию случайной величины.
Математическое ожидание случайной величины равно:
Возможные значения квадрата отклонения:
Тогда
[X-M(X)]2 | 2,25 | 0,25 | 0,25 |
p | 0,0625 | 0,375 | 0,5625 |
Дисперсия равна:
Однако, на практике подобный способ вычисления дисперсии неудобен, т.к. приводит при большом количестве значений случайной величины к громоздким вычислениям.
Поэтому применяется другой способ.
Вычисление дисперсии.
Теорема. Дисперсия равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания.
Доказательство. С учетом того, что математическое ожидание М(Х) и квадрат математического ожидания М2(Х) – величины постоянные, можно записать:
Применим эту формулу для рассмотренного выше примера:
|
|
|
|
Дата добавления: 2018-10-15; Мы поможем в написании ваших работ!; просмотров: 197 | Нарушение авторских прав
Лучшие изречения:
Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...
Ген: 0.016 с.