Известно 27 чистых металлов и более тысячи различных сплавов и соединений, у которых возможен переход в сверхпроводящее состояние. К ним относятся чистые металлы, сплавы, интерметаллические соединения и некоторые диэлектрические материалы.
Сверхпроводники
При понижении температуры удельное электрическое сопротивление металлов уменьшается и при весьма низких (криогенных) температурах скачком приближается к абсолютному нулю.
В 1911 г. при охлаждении кольца из замороженной ртути до температуры 4,2 К голландский ученый Г. Каммерлинг-Оннес обнаружил, что электрическое сопротивление ρ кольца внезапно падает до очень малого значения, которое невозможно измерить. Такое исчезновение электрического сопротивления, т. е. появление бесконечной удельной проводимости у материала, было названо сверхпроводимостью. Материалы, обладающие способностью переходить в сверхпроводящее состояние при их охлаждении до достаточно низкой температуры, стали называть сверхпроводниками. Критическая температура охлаждения, при которой происходит переход вещества в сверхпроводящее состояние, называют критической температурой перехода Т кр. Переход в сверхпроводящее состояние является обратимым. При повышении температуры материал возвращается в нормальное состояние.
Особенность сверхпроводников состоит в том, что однажды наведенный в сверхпроводящем контуре электрический ток будет длительно (годами) циркулировать по этому контуру без заметного уменьшения своей силы и притом без всякого дополнительного подвода энергии извне. Подобно постоянному магниту такой контур создает в окружающем пространстве магнитное поле.
В 1933 г. немецкие физики В.Майснер и Р.Оксенфельд обнаружили, что сверхпроводники при переходе в сверхпроводящее состояние становятся идеальными диамагнентиками. Поэтому внешнее магнитное поле не проникает в сверхпроводящее тело. Если переход материала в сверхпроводящее состояние происходит в магнитном поле, то поле «выталкивается» из сверхпроводника (рисунок 2.3).
Известные сверхпроводники имеют весьма низкие критические температуры перехода Т кр. Поэтому устройства, в которых используются сверхпроводники, должны работать в условиях охлаждения жидким гелием (температура сжижения гелия при нормальном давлении примерно 4,2 К). Это усложняет и удорожает производство и эксплуатацию сверхпроводниковых материалов.
Кроме ртути сверхпроводимость присуща и другим чистым металлам (химическим элементам) и различным сплавам и химическим соединениям. Однако такие металлы, как серебро и медь, при самых низких температурах, достигнутых в настоящее время, перевести в сверхпроводящее состояние не удалось.
Возможности использования явления сверхпроводимости определяются значениями температуры перехода в сверхпроводящее состояние Т кри критической напряженности магнитного поля H кр.
Сверхпроводниковые материалы подразделяют на мягкие и твердые. К мягким сверхпроводникам относят чистые металлы, за исключением ниобия, ванадия, теллура.
Основным недостатком мягких сверхпроводников является низкое значение критической напряженности магнитного поля Н кр.
В радиотехнике мягкие сверхпроводники не применяются, поскольку сверхпроводящее состояние в этих материалах исчезает уже в слабых магнитных полях при небольших плотностях тока.
К твердым сверхпроводникам относят сплавы с искаженными кристаллическими решетками. Они сохраняют сверхпроводимость даже при относительно больших плотностях тока и сильных магнитных полях. Свойства твердых сверхпроводников были открыты в середине прошлого столетия и до настоящего времени проблема их исследования и применения является одной из важнейших проблем науки и техники.
Рисунок 2.3 – Магнитное поле с введенным в него сверхпроводником
Твердые сверхпроводники обладают рядом особенностей:
- при охлаждении переход в сверхпроводящее состояние происходит не резко, как у мягких сверхпроводников, а на протяжении некоторого температурного интервала;
- некоторые из твердых сверхпроводников имеют не только сравнительно высокие значения критической температуры перехода Т кр, но и относительно высокие значения критической магнитной индукции В кр;
- при изменении магнитной индукции могут наблюдаться промежуточные состояния между сверхпроводящим и нормальным;
- имеют тенденцию к рассеянию энергии при пропускании через них переменного тока;
- зависимость свойств сверхпроводимости от технологических режимов изготовления, чистоты материала и совершенства его кристаллической структуры.
По технологическим свойствам твердые сверхпроводники делят на следующие виды:
сравнительно легко деформируемые, из которых можно изготавливать проволоку и ленты [ниобий, сплавы ниобий-титан (Nb–Ti), ванадий-галлий (V–Ga)];
трудно поддающиеся деформации из-за хрупкости, из которых получают изделия методами порошковой металлургии (интерметаллические материалы типа станнида ниобия Nb3Sn).
Часто сверхпроводниковые провода покрывают «стабилизирующей» оболочкой из меди или другого хорошо проводящего электрический ток и тепло металла, что дает возможность избежать повреждения основного материала сверхпроводника при случайном повышении температуры. В ряде случаев применяют композитные сверхпроводниковые провода, в которых большое число тонких нитевидных сверхпроводников заключено в массивную оболочку из меди или другого несверхпроводникового материала.
Пленки сверхпроводниковых материалов имеют особые свойства:
- критическая температура перехода Т крв ряде случаев значительно превышает Т кробъемных материалов;
- большие значения предельных токов, пропускаемых через сверхпроводник I кр;
- меньший температурный интервал перехода в сверхпроводящее состояние.
Сверхпроводники используют при создании: электрических машин и трансформаторов малых массы и размеров с высоким коэффициентом полезного действия; кабельных линий для передачи энергии большой мощности на большие расстояния; волноводов с особо малым затуханием; накопителей энергии и устройств памяти; магнитных линз электронных микроскопов; катушек индуктивности с печатным монтажом. На основе пленочных сверхпроводников создан ряд запоминающих устройств и элементов автоматики и вычислительной техники. Обмотки электромагнитов из сверхпроводников позволяют получать максимально возможные значения напряженности магнитного поля.
Свойства некоторых сверхпроводниковых материалов приведены в таблице 2.8.
Таблица 2.8 – Основные свойства некоторых сверхпроводниковых материалов
Параметр | Мягкие сверхпроводники | Твердые сверхпроводники | ||||||
Аl | Hg | Pb | Nb | 44%Nb+ +56% Ti | 50% Nb+ +50% Zr | V3Ca | Nb3Sn | |
Наибольшее значение: | ||||||||
температуры перехода Т кр0, К | 1,2 | 4,2 | 7,2 | 9,4 | 8,7 | 9,5 | 14 | 18 |
магнитной индукции перехода В кр0, Тл | 0,010 | 0,041 | 0,080 | 0,195 | 12 | 11 | 50 | 22 |
Криопроводники
Некоторые металлы могут достигать при низких (криогенных) температурах весьма малого значения удельного электрического сопротивления р, которое в сотни и тысячи раз меньше, чем удельное электрическое сопротивление при нормальной температуре. Материалы, обладающие такими свойствами, называют криопроводниками (гиперпроводниками). Физически явление криопроводимости не сходно с явлением сверхпроводимости.
Плотность тока в криопроводниках при рабочих температурах в тысячи раз превышает плотность тока в них при нормальной температуре, что определяет их использование в сильноточных электротехнических устройствах, к которым предъявляются высокие требования по надежности и взрывобезопасности.
Применение криопроводников в электрических машинах, кабелях и т.п. имеет существенное преимущество по сравнению со сверхпроводниками. Если в сверхпроводниковых устройствах в качестве охлаждающего агента применяют жидкий гелий, работа криопроводников обеспечивается благодаря более высококипящим и дешевым хладагентам – жидкому водороду или даже жидкому азоту. Это упрощает и удешевляет производство и эксплуатацию устройства. Однако необходимо учитывать технические трудности, которые возникают при использовании жидкого водорода, образующего при определенном соотношении компонентов взрывоопасную смесь с воздухом.
В качестве криопроводников используют медь, алюминий, серебро, золото.