Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Качественные признаки




Техники

Поколение техники

 

Второе

Третье

Четвер­тое Пятое Шестое

 

Ф

У

Н

К

Ц

И

О

Н

А

Л

Ь

Н

Ы

Е

 

Уровень

автоматизации управления

 в системах

 

 

 

 

  Обучающиеся системы с призна­ками искусственного интеллекта

Гибко программируемые системы с адаптацией и внутренней диагностикой

Комплексно-автоматизированные системы с адаптацией к внешним воздействиям

Автоматизированные системы управления

Полуавтоматическое управление

Уровень автоматизации управления в аппаратуре

 

 

 

 

  Автоматическое управление элементами  искусственного интеллекта

Гибкое автоматизированное программируемое управление

Автоматизированные управление с адаптацией к внешним воздействиям и самодиагностикой

Автоматизированные управление отделенными устройствами

Полуавтоматическое и ручное управление

 

 

К

О

Н

С

Т

Р

У

К

Т

И

В

Н

Ы

Е

Средства вычислительной техники

 

 

 

Супер ЭВМ, многосистемные сети

Микропроцессоры, микроЭВМ (программируемые контроллеры) встроенные локальные сети

Мини ЭВМ (периферийные) локальные сети

ЭВМ второго поколения (центральные), многопроцессорные системы

Устройство функциональной электроники

(интеграция функции в объеме)

 

 

 

Функциональные системы на принципах бионики

Многофункциональные устройства

Функциональные устройства

Изделия ЭТ

(степень интеграции 

 

 

 

 

  Интегральные схемы

Интегральные схемы (105 — 106 )

Интегральные схемы (104 )

Интегральные схемы (102 — 103)

Дискретные элементы

Т

Е

Х

Н

О

Л

О

Г

И

Ч

Е

С

К

И

Е

Технология создания программного продукта

 

 

 

 

  Обучающиеся системы программирования

Системы программирования на едином языке высокого уровня

Автоматизированная технология программирования с применением языков высокого уровня

Пакетное программирование с применением языков высокого уровня

Программирование в машинных кодах с применением алгоритмических языков

Оборудование и системы проектирования, производства и контроля изделий

 

 

 

 

  Обучающиеся системы проектирования, производства и контроля

Интегрированные системы проектирования, производства и контроля

Системы автоматизированного проектирования, производства и контроля

Оборудование для автоматизации отдельных операций проектирования, производства и контроля

Полуавтоматическое управление

                 

 

                   n = С + In (N + 1)= ln e c (N+ 1 ),

где С = 0,5772... (постоянная Эйлера); е = 2,7182... (основание натуральных логарифмов).

Исходные и производные элементы технической устройства (Ni) распределены по иерархическим уровням экспоненциально:  

                          Ni = е n - i,

где i = 1,2, ... n — номер иерархического уровня структуры (за первый принят низший уровень иерархии).

Среднее количество информации qi, которое содержит каждый элемент устройства i — го иерархического уровня представлено экспоненциальной зависимостью

                         qi = е i-1.

Из двух последних соотношений определяется среднее количество информации технического устройства

           w =qi Ni. = е n-1, = Ni = const.

Количество информации, которое содержит каждый элемент устройства, есть информационная емкость элемента. Она образует в информационном потоке зоны, общее количество которых определяется выражением

Информационные возможности человеческого мозга ограничены. Они определяются следующими предельными значениями: n = 7,6; w = 735; т = 54. Это значит, что человек может сконструировать устройство, состоящее не более чем из 735 неизоморфных (неодинаковых по форме) исходных элементов, между которыми связи установлены локально и не более чем по 54 существенным параметрам.

Сложность реализованной при этом информации не превышает седьмого уровня.

Устройство с информационными характеристиками, не превышающими указанных предельных значений, есть техническое устройство; при больших значениях — полу­чим техническую систему.

Вединстве с количественными параметрами качественные характеристики ТС по сравнению с техническими устройствами отражают более сложный уровень организации и функционирования. ТС создаются необособленно друг от друга, а разрабатываются как целостность с присущими данной системе структурными и функциональными связями, иерархичностью этих связей. Правомерно поставить вопрос: какими методами и средствами исследуются качественные особенности ТС? Это путь системного анализа, адекватный их природе, требующий самостоятельной и соответствующей методологической и теоретической системного подхода, системотехники и общей теории систем. При исследовании и разработке ТС происходит интеграция естественно-научных, технических и социальных знаний. Причем «фронт» их применения, особенно социальных знаний, становится шире и глубже, значение повышается. Если при разработке технических устройств учитывается стабильность их характеристик или устойчивость, то создание ТС отличается обязательным учетом многообразных случайных воздействий. О практическом использовании технических устройств начинают говорить после этапа их проектирования. Для применения же ТС необходимы предварительные теоретические исследования, результаты которых могут пополнять арсеналы научных знаний, стимулировать их развитие. Проведение теоретико-практических разработок ТС ограничено по времени и требует быстрых темпов. Замена существующих ТС принципиально новыми системами начинается до исчерпания их физико-химических и технических возможностей. Стадия усовершенствования ТС может быть сокращена или исключена совсем, если наука открыла новый принцип, позволяющий создать более качественную и эффективную систему. Если при создании технических устройств производственным элементом, как правило является завод, то ведущей формой организации производства современных ТС становится научно-производственное объединение.

Итак, понятие «система» стало ключевым в современной научно-технической деятельности. Начатое с середины XX в. активное развитие системного подхода выражает ныне одну из главных особенностей научного познания. Будучи методологическим направлением в науке основная задача которого заключается в разработке методов исследования и конструирования сложноорганизованных объектов (систем), этот подход стал историческим этапом в развитии методологии и методики исследовательской, конструкторской, технологической деятельности, способов и приемов объяснения и описания сущности естественных и искусственно создаваемых объектов. В его арсенале — методы выработки, принятия и обоснования решений при создании и управлении техническими, человеко-машинными, социальными системами. Теории, а также практике небезразлично, как их изучают, проектируют, строят, эксплуатируют и т.д. Подход к ним (методологическая направленность) и анализ (совокупность методов и средств) адекватны природе системных объектов. В условиях развертывания и углубления научно-технической революции происходит дальнейшее развитие системного подхода. Сама НТР выступает как сложное развивающееся системное явление, в котором и наука, и техника, и производство обладают свойствами системности. И в науке, и в технике, и в технологии оно формировалось исторически постепенно, в соответствии с их структурными функциональными особенностями.

Итак, анализ истории техники показывает, что становление ТС выступает как прогрессивное направление развития техники. Формирование принципов системности происходит в структурном и функциональном плане, в их взаимодействии и единстве. Оно охватывает всю тех­нику, ее субстратную и субстанционную основу, конст­рукции и функции. Становление системности характерно не только развитию техники, но и производству, и науке, и образованию. Эта тенденция в полной мере проявляет себя в становлении и функционировании системы наука — техника — производство — образование, раскрывающей структуру и направленность современного научно-технического прогресса.

 

1.2.6. Развитие технических систем как объект исследования,

оценки и управления

Исследование развития ТС, его оценка и управление имеют два взаимосвязанных объектных основания. Первое — внутренние количественные и качественные изменения в элементах ТС, структуре и функциях, а также в субстратно-субстанциональной основе систем. Второе — внешние изменения как результат взаимодействия с общественными явлениями. Такое раздвоение рассматриваемого целостного объекта имеет методологический смысл, ибо дает возможность выявить предметные особенности и целевую направленность научно-технический и производственной деятельности по созданию систем. Именно в процессе этой созидательной деятельности развивается ТС. Если рассматривать относительную самостоятельность развития, то оно предстанет как исторический процесс. Теперь это не входит в нашу задачу потому, что здесь развитие ТС рассматривается как объект и результат, как предмет и цель деятельности — исследовательской, оценочной и управленческой, т.е. созидательной деятельности. ТС представляет собой результат многоэтапного превращения природных объектов, существующих независимо от целеполагающей деятельности человека («первая объективная реальность»), в социальную форму бытия материи («вторая объективная реальность»), т.е. в искусственные материальные образования, становящиеся средством человеческой деятельности, направленной на удовлетворение общественных потребностей. Мир техники, мир в виде, например, преобразованных технических систем становится общим показателем уровня отношения человека к природе и тех общественных отношений, при которых совершается данная предметная деятельность. ТС входят в качестве вещественного компонента в произво­дительные силы общества. Поэтому развитие их производ­ственных функций и характер использования определя­ются диалектикой взаимодействия производительных сил и производственных отношений. Нас же интересуют внут­ренние особенности целенаправленного развития элемен­тов, структуры, функционирования ТС, которое соверша­ется в процессе преобразования природного в социальное. Не дифференцируя, можно сказать, что в целом это и есть объект технических наук как особого вида научной дея­тельности, продуцирующей технические знания, конструк­торские и технологические разработки, проекты, соответ­ствующую документацию. Применение технических наук потребовало новых организационных форм при значитель­ном расширении предметной структуры исследователь­ского процесса на основе интеграции с ними естествен­ных и общественных наук. Понадобились принципиально новые профессии исследователей, проектировщиков, экс­плуатационников.

В самом общем виде моменты развития ТС прослежи­ваются в следующих стадиях: теоретическое описание не только технико-экономической, но и социальной функции ТС, обусловленной объективными общественными усло­виями и потребностями; разработка методов и программ научной и проектно-конструкторской деятельности по со­зданию системы; формирование теоретической модели ТС, способной реализовывать технико-экономическую и соци­альную функцию; создание и внедрение ТС, в ходе кото­рого она становится средством труда, включается в веще­ственный состав производительных сил; получение обще­ственного результата от применения ТС, оценка ее влияния на всю совокупность общественных явлений и корректи­ровка на этой основе создания ТС.

Развитие ТС выступает настолько важным социальным явлением, что их разработка невозможна без организа­ции действенной взаимосвязи науки и техники, включающей в себя целый комплекс наук естественно-технических, экономических, инженерную психологию, тех­ническую эстетику, эргономику, экологию и другие. От взаимодействия технических и экономических наук зависит разработка технико-эксплуатационных показате­лей. Конкретно-экономические науки (экономика промыш­ленности, экономика отдельных областей, экономическая статистика) формируют экономические показатели сис­тем. Еще более значителен ряд взаимодействующих наук, которые обеспечивают социальные критерии развития ТС. В условиях развертывающейся НТР интенсифицируется обмен вещества и энергии между обществом и природой, что требует разработки и применения научно обоснован­ного регулирования природопользования и охранитель­ных мер. Прогресс ТС неразрывно связан с мероприятия­ми по дальнейшему совершенствованию здравоохранения. Наконец, есть немало проблем развития ТС, которые тре­буют социально-психологических решений. Поэтому эко­логические и социальные показатели ТС могут быть вы­делены на основе тесных контактов между естественно-техническими, сельскохозяйственными, медицинскими и общественными науками.

Определяющей для развития ТС проблемой, возника­ющей в процессе созидательной деятельности, что требует взаимодействия технических наук с общественными на­уками, является определение критерия прогрессивности и социально-экономической целесообразности разработки ТС. Попытки ограничиться чисто техническими критерия­ми несостоятельны, так же как и нельзя свести дело толь­ко к экономической эффективности создания новых ТС. На окончательное решение воздействуют не только эконо­мические, но и другие социальные факторы. Значение их может быть настолько велико, что выбор технического ва­рианта окажется менее выгодным с сегодняшней или даже с завтрашней экономической точки зрения.

Научное решение вопроса о том, насколько прогрес­сивна создаваемая ТС, получает обоснование совокупно­стью многих социальных параметров (экономических, эр­гономических, эстетических, экологических и пр.). Между тем в технической и экономической литературе широ­ко распространены характеристики ТС, определяющие их превосходство перед другими в одном каком-либо отно­шении. Причем чаще всего определение степени совер­шенства той или иной ТС сводится к экономическому критерию, к учету ее себестоимости и цены при различ­ных параметрах. Так, уровень экономической эффектив­ности нового технического объекта определяет меру его совершенства. Момент развития ТС фиксируется такой оценкой. Однако понятия совершенства ТС и ее эконо­мичности не совпадают. Для научной оценки требуется количественное определение меры их совершенства. Ме­тодика системных оценок, исключающих односторонность, пока не разработана. Как выделить параметры развития ТС, как их измерить и оценить — эти вопросы выдвига­ются в ранг наиболее актуальных и общеметодологиче­ских для технических наук. Необходима и общетеорети­ческая база, формируемая на основе соответствующих идей общей теории систем, системотехники, конструктологии и других дисциплин. Развитие современных ТС ста­новится объектом, как правило, системных исследований оценок и собственно объектом оценки. Оно осуществляет­ся во времени и придает ему направленность, необрати­мость, и еще — периодичность развития ТС в процессе созидательной деятельности, а именно: вначале теорети­ческие и прикладные исследования, затем разработка, освоение и применение новой научно-технической идеи, далее — совершенствование технико-экономических и со­циальных параметров создаваемой ТС до того момента, когда наступит время замены ее на качественно новую, более эффективную. Этот временной период есть жизнен­ный цикл системы. Каждый этот этап относительно самостоятельный, имеет качественную определенность, зна­чит — особенности функционального характера, выполня­ет специфическую роль в создании ТС. Существенной осо­бенностью функционирования цикла является его наукизация. Наука, во-первых, генерирует созидательные идеи, и, во-вторых, продолжает выступать (такова объективная функция науки) основой превращения «процесса производства из простого процесса труда в научный процесс» (Маркс К. Экономические рукописи 1857—1859 гг. // Маркс К., Энгельс Ф. Соч. Т. 46. С. 618). Поэтому необходимость управления развитием ТС, техники в целом есть следствие объективной закономерной тенденции становления такого производства, которое К. Маркс назвал «эксперимен­тальной наукой, материально-творческой» и «предметно воплощающейся наукой» (там же, с. 221). Научные откры­тия и новые концепции наряду с фундаментальными ис­следованиями служат сегодня источником возникновения и развития не только прогрессивных научных направле­ний, новых поколений ТС, но и целых отраслей индустрии, средством повышения научно-технического уровня всего производства.

Объектами управления в этом отношении становятся темпы развития научно-технических исследований и раз­работок по сравнению с производством, темпы роста чис­ленности научных сотрудников, расходов на науку и увели­чение ее вклада в создание современной техники, пути и способы разрешения противоречия между потребностями производства и реализацией научно-технических достижений. Прогресс науки и техники, рост потенциаль­ных возможностей повышения эффективности производ­ства значительно обгоняют экономические возможности этой реализации. Почему не все значительные научные достижения находят применение в производстве? В связи с этим одной из важнейших задач управления является выбор перспективных направлений развития ТС в целях концентрации научных сил для решения главных проблем, от чего зависит ускорение темпов создания ТС. В сферу управления входят развитие материально-технической базы научно-исследовательских и опытно-конструкторских орга­низаций, усиление заинтересованности и ответственнос­ти их коллективов и работников, выполняющих функции управления с большей эффективностью их деятельности. Исследования сосредотачиваются на решении ключевых методологических, научно-технических и организацион­ных вопросов разработки ТС, предметно — на открытиях и изобретениях, способных внести подлинно революционные изменения в производство, с тем чтобы в ближай­шие годы обеспечить создание систем, отвечающих по сво­им показателям лучшим мировым образцам, внедрить про­грессивные технологические процессы и на этой основе существенно повысить производительность труда.

Проектирование ТС как объект управления занимает особо важное место в проработке ТС. Документация (проектно-конструкторская и технологическая, организацион­ные схемы, графики выпуска ТС или освоение техноло­гических процессов, заводские и отраслевые стандарты и др.) необходима для организации производства. Проводит­ся тщательная экспертиза, устанавливающая соответствие созданных опытных образцов мировому уровню НТП. Выявляется технико-экономическая оптимальность ТС (мак­симально возможное использование унифицированных конструкций, узлов и деталей, положительно зарекомен­довавших себя на практике, высокий уровень стандарти­зации, применение прогрессивных технологических про­цессов и методов организации проектирования). Здесь происходят качественное превращение научных знаний, овеществление их в конкретных видах ТС. Техническое освоение фундаментальных и прикладных знаний требу­ет решения целого ряда проблем не только научно-техни­ческого, но также социально-экономического и организа­ционного характера.

Объектом управления является и производство — один из важнейших этапов процесса создания ТС. Через него осуществляется целенаправленное воздействие на пред­шествующие производству этапы проектирования, прикладных и фундаментальных исследований. Именно на этапе производственного освоения ТС выявляется эффек­тивность научных идей и их технической реализации. Принятие управленческих решений предполагает всесто­ронний учет особенностей современного производства, и прежде всего динамичность, необходимость его непрерыв­ного совершенствования, приводящего к своевременному обновлению материально-технической базы, технологии и организации производства. Это, в свою очередь, оказыва­ется возможным при условии постоянного поиска мобильных технических средств и таких методов организации, которые обеспечивают быструю переориентацию произ­водства и подготовку к изготовлению новых ТС.

Управление развитием ТС происходит в условиях ограничения экстенсивного роста производства и перехо­да к всесторонней интенсификации производства, улуч­шению использования функционирующих основных про­изводственных фондов и увеличению доли выпуска про­дукции за счет роста производительности труда. Как бы ни были сложны современные ТС, научно-технические ре­шения, обеспечивающие экономное расходование ресур­сов при их создании, имеются во всех отраслях народно­го хозяйства. Это опыт, во-первых, создания и накопления принципиально новых средств труда, во-вторых — техни­ческого перевооружения и реконструкции действующих предприятий на базе выпускаемых ТС.

В сложном, многогранном и дорогостоящем процессе создания ТС участвуют большие коллективы, число орга­низаций-участников может достигать нескольких десят­ков и даже сотен. Стоимость разработок и испытаний очень велика и непрерывно возрастает. Разработка ТС идет по определенному графику, с тем чтобы они поступа­ли в эксплуатацию в назначенный срок. Плохая организа­ция затягивает сроки и чрезмерно, неоправданно увеличи­вает затраты. Все эти вопросы сплетаются в один общий узел и могут быть решены только с помощью очень совер­шенной организации коллективного труда.

Однако даже оптимальная организация не исчерпыва­ет всех проблем, возникающих при создании ТС. Управле­ние призвано увязать сопряженные в единый макрокомп­лекс сложные системы. Первая — сама техническая систе­ма («металл», как обычно говорят специалисты), вторая — множество научных, конструкторских, производственных организаций, образующих проектно-технологический ком­плекс, и третья — создание и эксплуатация комплекса (си­стемы), начиная от формирования тактико-технических требований к нему и кончая ликвидацией наступающей после физического или морального устаревания. Всем ука­занным системам свойственны характерные особенности: большое число разнородных компонентов и этапов, тес­ные взаимосвязи между ними, иерархическая структура, исключительно большая роль управления. Организация макросистемы и управление ею воздействуют не на одну, а на все сопряженные системы, обеспечивая достижение поставленной цели. Она заключается в том, чтобы создать высокоэффективную ТС в установленный заданием срок (лучше сократив его) при минимальных трудовых, мате­риальных и финансовых затратах. При реализации этой цели возникает много препятствий. По тем или иным при­чинам не удается добиться выполнения всей связанной суммы требований, часто противоречащих друг другу, либо же сроки выполнения отдельных этапов работ начинают растягиваться. Причины могут содержаться в изъянах других сопряженных систем. Это недоработки, дефекты проектирования или же недостатки в организациях, со­здающих эту систему. Они могут быть вызваны и пробле­мами планирования, отсутствием какого-либо этапа. По­этому вырабатывая стратегию и тактику управления, нельзя отрывать эти системы друг от друга. Планирова­ние призвано устранить эти препятствия, помехи и слу­чайности и включает в необходимый арсенал средств воз­действия на многозвенный процесс создания ТС (в част­ности, разделение на определенные этапы разработки, четкое планирование каждого звена, этапа и компонента, концентрацию усилий на важнейших, критических участ­ках, автоматизацию работ, моральные и материальные сти­мулы). Поэтому именно развитие ТС становится объек­том управления.

Задачи управления развитием ТС, практически решае­мые или в связи с некоторыми обстоятельствами пока не решаемые, можно классифицировать по функционально­му критерию. К функциям управления относятся планиро­вание (прогнозирование), организация, регулирование, учет и контроль.

Планированию принадлежит решающее значение, ибо выработка плана предполагает выбор направлений разви­тия ТС, определение состава и последовательности работ, обоснованный отбор средств для реализации путей развития, выбор и расчет значений показателей развития ТС, определение многочисленных связей, массивов и потоков информации. В результате планирования появляется опре­деленный вариант. Если нет вариантов, то не будет выбо­ра. Но варианты не существуют сами по себе, вне отноше­ния к задаче или цели, которую предстоит достичь. Если решается задача выбора из имеющихся вариантов, то аль­тернативами являются уже существующие виды и типы ТС с перечнями характеристик, технико-экономических данных и других сведений, дающих возможность оцени­вать их эффективность. Для управления в будущем эта информация отсутствует, ее заменяют данные прогнозных оценок как о перспективных видах и типах ТС, так и об их количественных характеристиках. То есть для того чтобы выбирать, надо определить, из чего выбирать, оценить возможный качественный и количественный эскизный вари­ант будущего развития. Как видим, вопросы оценки управ­ления тесно связаны и взаимообусловлены.

Организация служит целям формирования рациональ­ной структуры созидательной деятельности подразделе­ний, занятых разработкой ТС. Функция организации, выраженная в категории целевого управления, дает воз­можность определить содержание и характер организа­ционных связей в этой структуре, их роль, месторасполо­жение и «выходы» к смежным структурам. Однако это — только структурный аспект исследования, характеризую­щий в большей мере организацию как статистику систе­мы. Поскольку организация представляет собой структур­ное состояние элементов, а значит, их взаимосвязь, то в ней уже содержатся взаимозависимость, взаимовлияние элементов, т. е. динамическое их состояние. Значит, функ­ционально организация выступает как процесс, например, мобилизации имеющихся ресурсов и резервов, их балан­сирования и перераспределения для достижения созида­тельной цели. Организация как деятельность (вместе с тем и ее результат) в форме тех или иных связей, регламенти­рованных процессов решения задач, собственно струк­турных звеньев охватывает деятельность отдельных ра­ботников и производственных коллективов.

Регулирование предполагает координирование и стиму­лирование действий коллективов в разработке вопросов, связанных с развитием ТС. Оно учитывает так называе­мые возмущающие воздействия внешней среды. Тогда до­стигается такая деятельность, в которой выравниваются все отклонения выхода системы от заданного значения этого состояния. Координирование обеспечивает согласо­ванную работу коллективов и отдельных исполнителей, занятых в данной сфере деятельности. Стимулирование призвано создавать и поддерживать непрерывную заинтересованность персонала в решении поставленных перед ним производственных и других задач, связанных с обес­печением результативности развития ТС.

Учет и контроль в управлении осуществляются по двум направлениям оценки: действий исполнителей и под­разделений по реализации задач, связанных с создани­ем ТС; функционирования и развития систем (комплексов).

Как бы ни были конкретны и целенаправленны те или иные руководящие указания, четкими — организация и регулирование хода их выполнения, тем не менее задача не может считаться выполненной без соответствующей оценки действий исполнителей.

Учет и оперативный контроль созидательной деятель­ности ведутся в целях анализа этого процесса и выявле­ния недостатков и резервов оптимизации каждого этапа жизненного цикла ТС, устранения недостатков, обеспе­чения необходимой информацией.

В табл. 1.7 приведен фрагмент классификации задач управления развитием ТС. Группировка задач по стадиям жизненного цикла дает возможность анализировать состо­яние и принимать целенаправленные решения по отдель­ным стадиям развития ТС, проектировать (моделировать) на этой основе особые организационные блоки (службы, отделы, цеха), характеризующиеся общностью выполняе­мых ими работ по направления развития ТС и обеспечи­вать предпосылки для системного управления. Требования системного подхода вызывают необходимость дальнейшего расширения представлений о фактических масштабах и содержании развития ТС и возникающих в этой связи но­вых проблем управления.

Итак, будучи объективной закономерностью техниче­ского прогресса, развитие ТС рассматривается в триеди­ном плане: исследование особенностей, перспективных направлений технического прогресса, оценка соответству­ющих перспектив и управление развитием техники. Раз­витие ТС, в свою очередь, также нуждается в оценке, что­бы раскрыть реальные возможности его оптимизации.

Таблица 1.7





Поделиться с друзьями:


Дата добавления: 2018-10-15; Мы поможем в написании ваших работ!; просмотров: 188 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Человек, которым вам суждено стать – это только тот человек, которым вы сами решите стать. © Ральф Уолдо Эмерсон
==> читать все изречения...

3152 - | 2995 -


© 2015-2026 lektsii.org - Контакты - Последнее добавление

Ген: 0.014 с.