Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Периодичность свойств элементов




Так как электронное строение элементов изменяется периодически, то соответственно периодически изменяются и свойства элементов, определяемые их электронным строением, такие, как атомный радиус, энергия ионизации, энергия сродства к электрону, электроотрицательность.

Атомный радиус. Атомы и ионы не имеют строго определенных границ вследствие волновой природы электронов. Поэтому введены два условных понятия атомных радиусов:

 - эффективный;

 - орбитальный.

Эффективный атомный радиус определяется экспериментально (из спектрографических данных) как ½ расстояния между центрами ядер двух соседних атомов в молекуле или кристалле.

Орбитальный атомный радиус – это расстояние от ядра атома до наиболее удаленного максимума электронной плотности.

 

Атомные радиусы элементов периодически изменяются в зависимости от величины заряда ядра (рис. 2.5):

 

1. В периоде атомные радиусы с ростом порядкового номера уменьшаются (от щелочного металла к инертному газу). Атом Na имеет радиус 1,8 , Mg – 1,6 , Сl – 0,73 .Объяснить это можно тем, что с увеличением заряда ядра увеличивается сила кулоновского притяжения электронов к ядру, которая превалирует над силами взаимного отталкивания электронов.

Наибольшее уменьшение радиусов наблюдается у элементов малых периодов, у которых происходит заполнение электронами внешнего энергетического уровня. В больших периодах у d – и f – элементов наблюдается более плавное уменьшение радиусов при увеличении заряда ядра атома. Это уменьшение называется соответственно d – и f – сжатием.

2. В пределах каждой подгруппы элементов радиусы, как правило, увеличиваются при увеличении номера периода (или Z), так как возрастает число энергетических уровней.

У элементов III группы наблюдается исключение из этого правила – радиус атома галлия Ga (1,22 ) меньше радиуса атома алюминия Al (1,26 ). Причина кроется в том, что в 4-м периоде между s – и p – элементами расположены десять d – элементов, поэтому свойства галлия не укладываются в ряд B – Al – Ga, зато для триады B – Al – Sс атомные радиусы возрастают в соответствии с общим правилом, хотя B и Al p – элементы, а Sc d – элемент. Однако увеличение радиусов при том же возрастании заряда ядра в подгруппах s – и p – элементов больше такового в подгруппах d – элементов, например в V группе1:

p – элементы                                                  d - элементы                    

                Z r, нм                                                       Z  r, нм

As……….33 0,148                                     V………..23 0,134

Sb……….51 0,161                                     Nb……….41 0,145

Bi……….83 0,182                                      Ta……….73 0,146

Как видно, в подгруппе мышьяка при переходе от As к Bi атомный радиус увеличивается на 0,034 нм, а в подгруппе ванадия при переходе от V к Ta – всего на 0,012 нм.

Существенно подчеркнуть еще одну особенность для подгрупп d – элементов. Увеличение атомных радиусов в подгруппах d – элементов в основном отвечает переходу от элемента 4-го к элементу 5-го периода. Соответствующие же радиусы d – элементов 5-го и 6-го периодов данной подгруппы примерно одинаковы. Это объясняется тем, что увеличение радиусов за счет возрастания числа электронных слоев при переходе от 5-го к 6-му периоду компенсируется f – сжатием2, вызванным заполнением 4f – подуровня у f – элементов 6-го периода. При аналогичных электронных конфигурациях внешних слоев и примерно одинаковых размерах атомов для d – элементов 5-го и 6-го периодов данной подгруппы характерна особая близость свойств.

Радиусы ионов отличаются от радиусов атомов, т. к. они или лишились нескольких электронов, или присоединили последние. Поэтому радиусы положительно заряженных ионов меньше, а радиусы отрицательно заряженных ионов больше радиусов соответствующих атомов.

 Энергия ионизации. Энергия, необходимая для отрыва электрона от невозбужденного атома, называется первой энергией ионизации I 1:

.

В результате ионизации атомы превращаются в положительно заряженные ионы. Энергию ионизации выражают либо в кДж/моль, либо в эВ/атом (1эВ = 1,6∙10-19 Дж).

Энергия ионизации характеризует восстановительную способность элемента или его металлические свойства. Первая энергия ионизации (рис. 2.6) определяется электронным строением элементов и ее изменение имеет периодический характер:

1. Первая энергия ионизации и восстановительные свойства элементов в периоде возрастают слева направо. Наименьшие значения энергии ионизации имеют щелочные элементы, находящиеся в начале периода, наибольшими значениями энергии ионизации характеризуются благородные газы, находящиеся в конце периода, что обусловлено возрастанием заряда ядра и уменьшением размеров атомов.

Наряду с резко выраженными максимумами и минимумами на кривой энергии ионизации наблюдаются слабо выраженные, что можно объяснить с помощью двух взаимосвязанных представлений: об экранировании заряда ядра и о проникновении электронов к ядру.

Эффект экранирования заряда ядра обусловлен наличием в атоме между данным электроном и ядром других электронов, которые экранируют, ослабляют воздействие на этот электрон положительного заряда ядра и тем самым ослабляют связь его с ядром. Понятно, что экранирование возрастает с увеличением внутренних электронных слоев.

Эффект проникновения электронов к ядру обусловлен тем, что, согласно квантовой механике, все электроны (даже внешние) определенное время находятся в области, близкой к ядру. Поэтому можно сказать, что внешние электроны проникают к ядру через слои внутренних электронов.

Концентрация электронной плотности у ядра (степень проникновения электронов) при одном и том же главном квантовом числе наибольшая для s - электрона, меньше – для р – электрона, еще меньше для d – электрона и т. д. Например, при n = 3 степень проникновения убывает в последовательности 3s>3p>3d.

Понятно, что эффект проникновения увеличивает прочность связи внешних электронов с ядром. Этим, в частности, определяется порядок заполнения в многоэлектронных атомах s -, p -, d -, f - …орбиталей при данном n.

Можно также сделать вывод, что вследствие более глубокого проникновения s – электроны в большей степени экранируют ядро, чем р – электроны, а последние – сильнее, чем d – электроны, и т. д.

Влияние на прочность связи электронов с ядром оказывает также взаимное отталкивание электронов одного и того же уровня и в особенности одной и той же орбитали.

 

Воспользуемся сказанным для объяснения рис. 2.6. Как видно, внутренние максимумы на кривой первой энергии ионизации соответствуют элементам, у которых внешние уровни завершены – (Be, Mg, Zn) или заполнены наполовину – p3 (N,P,As), что свидетельствует о повышенной устойчивости подобных конфигураций:

 Следующий непосредственно затем минимум отвечает появлению электрона в новом, более далеком от ядра р – подуровне (B, Al, Ga), экранированном от ядра конфигурацией s2, либо взаимным отталкиванием двух электронов одной и той же р – орбитали (O, S, Se):

В соответствии с особенностями электронных структур у элементов d(f) – семейства энергии ионизации близки.

2. В главных подгруппах с увеличением порядкового номера энергия ионизации уменьшается, что обусловлено увеличением размеров атомов и усиливающимся (по мере увеличения числа электронных слоев) экранированием заряда ядра электронами, предшествующими внешним электронам.

3. В подгруппах d – элементов при переходе от 3d – к 5d – элементу энергии ионизации увеличиваются, что видно, например, на элементах V группы.

р – элементы

d – элементы

  Z I1, эВ   Z I1, эВ
As………... 33 9,82 V……….... 23 6,74
Sb………... 51 8,64 Nb……….. 41 6,88
Bi………... 83 7,29 Ta………... 73 7,89

Повышение энергии ионизации в подгруппах d – элементов можно объяснить эффектом проникновения электронов к ядру. Так, если у d – элементов 4-го периода 4s – электроны попадают под экран 3d – электронов, то у элементов 6-го периода 6s – электроны попадают уже под двойной экран 5d – и 4f – электронов. Отсюда при переходе от 4-го к 6-му периоду прочность связи внешних s – электронов с ядрам повышается, а поэтому и энергия ионизации d – элементов возрастает.

Кроме первой энергии ионизации, элементы с многоэлектронными атомами могут характеризоваться второй I2, третьей I3 и более высокой энергией ионизации, поскольку можно удалить 1, 2, 3… - электрона из атома.

Энергия ионизации увеличивается в следующем порядке:I1< I2< I3<…< In, т. к. удаление электрона от электронейтрального атома происходит легче, чем от иона.

Энергия сродства к электрону (сродство к электрону ). Энергетический эффект присоединения электрона к нейтральному атому называется сродством к электрону E. Сродство к электрону выражается в кДж/моль или эВ/атом. Сродство к электрону характеризует окислительные или неметаллические свойства атома элемента. Принимая электроны, атом превращается в отрицательно заряженный ион по схеме:

.

Надежные значения сродства к электрону найдены лишь для небольшого числа элементов. Понятно, что сродство к электрону зависит от электронной конфигурации атома, и в характере его изменения с увеличением порядкового номера элемента наблюдается отчетливо выраженная периодичность (рис. 2.7). Сравнение с изменением энергии ионизации показывает, что максимумы и минимумы на кривой сродства к электрону смещены по сравнению с кривой энергии ионизации на один элемент влево.

В периодах слева направо сродство к электрону и окислительные свойства элементов возрастают (исключение для N и P). В группах сверху вниз сродство к электрону, как правило, уменьшается.

Как следует из данных табл. 2.3 и рис. 2.7, наибольшим сродством к электрону обладают р – элементы VII группы. Наименьшее и даже отрицательное сродство к электрону имеют атомы с конфигурацией s2 (Be, Mg, Zn) и s2p6 (Ne, Ar, Kr) или с наполовину заполненным р – подуровнем (N, P, As). Это служит дополнительным доказательством повышенной устойчивости указанных электронных конфигураций.

Выделением энергии сопровождается присоединение одного электрона к атомам кислорода, серы, углерода и некоторым другим. Таким образом, для указанных элементов силы притяжения к ядру дополнительного электрона оказываются большими, чем силы отталкивания между дополнительным электроном и электронной оболочкой атома.


Таблица 2.3

Сродство к электрону (Е) атомов некоторых элементов

Элемент Е, эВ Элемент Е, эВ Элемент Е,эВ
H 0,754 N -0,21 Al 0,52
He -0,22 O 1,467 Cl 3,61
Li 0,59 F 3,45 K 0,52
Be -0,19 Ne -0,57 Br 3,54
B 0,3 Na 0,34 I 3,29
C 1,27 Mg -0,22    

Присоединение последующих электронов, т. е. двух, трех электронов и более к атому, согласно квантово-механическим расчетам, невозможно. Поэтому одноатомные (простые) многозарядные анионы (О2-, S2-, N3-) в свободном состоянии существовать не могут.

Электроотрицательность. Понятие электроотрицательности (ЭО) позволяет оценить способность атома данного элемента к оттягиванию на себя электронной плотности по сравнению с другими элементами соединения. Очевидно, что эта способность зависит от энергии ионизации атома и его сродства к электрону. Согласно одному из определений (Малликен), электроотрицательность атома ЭО может быть выражена как полусумма его энергии ионизации и сродства к электрону: . Имеется около 20 шкал электроотрицательностей, в основу расчета значений которых положены разные свойства вещества. Значения электроотрицательностей разных шкал отличаются, но относительное расположение элементов в ряду электроотрицательностей примерно одинаково. В шкале относительных электроотрицательностей (ОЭО) по Полингу (рис. 2.8) электроотрицательность фтора принята равной 4,0.

Как видно из приведенных данных, в периодах наблюдается общая тенденция роста величины электроотрицательности, а в подгруппах - ее падения. Наименьшими значениями электроотрицательности характеризуются s – элементы I группы, а наибольшими – р – элементы VII группы.






Поделиться с друзьями:


Дата добавления: 2018-10-15; Мы поможем в написании ваших работ!; просмотров: 239 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Люди избавились бы от половины своих неприятностей, если бы договорились о значении слов. © Рене Декарт
==> читать все изречения...

2499 - | 2301 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.