Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Логика доказательства в психолого-педагогическом эксперименте




Доказательство экспериментальной гипотезы состоит из трех основных компонентов: фактов, аргументов и демонстрации справедливости предложенной гипотезы, вытекающей из этих аргументов и фактов.

Факты и аргументы, как правило, представляют собой идеи, истинность которых уже проверена или доказана. В силу этого они могут без специального доказательства их справедливости приводиться в обоснование истинности или ложности гипоте-

553


Часть II. Введение в научное психологическое исследование

зы. Демонстрация — это совокупность логических рассуждений, в процессе которых из аргументов и фактов выводится справед­ливость гипотезы.

Для того чтобы доказательство было убедительным, в нем так­же необходимо следовать определенным правилам. Одно из них гласит: гипотеза, аргументы и факты должны быть суждениями, ясно и точно определенными. В противном случае оно может быть опровергнуто или подвергнуто сомнению.

Доказываемое положение — в нашем случае гипотеза — на всем протяжении доказательства должно оставаться тождествен­ным, т.е. одним и тем же. Нарушение этого правила обычно ве­дет к тому, что, несмотря на затраченные усилия, гипотеза оста­ется недоказанной.

Факты и аргументы, приводимые в процессе доказательства - гипотезы, не должны противоречить друг другу, так как это так­же сводит доказательство на нет. Необходимо строго следить за тем, чтобы соблюдалось следующее правило: аргументы и фак­ты, приводимые в подтверждение гипотезы, сами должны быть истинными и не подлежать сомнению.

Часто встречающаяся ошибка в доказательстве заключается в том, что экспериментально установленная последовательность событий или фактов, их статистически достоверная связь (кор­реляция) ошибочно принимаются за свидетельство существова­ния причинно-следственной зависимости между этими события­ми или фактами. Например, из того, что за некоторым событием А всегда и неизменно следует другое событие Б (скажем, за вес­ной — лето; за положением часовой стрелки на цифре 1 — ее пе­реход на цифру 2), нередко делают вывод о том, что предшествую­щее событие является причиной наступления последующего (что в приведенных выше примерах, очевидно, неверно). Причинной считается такая зависимость, при которой появление события А не только неизбежно ведет за собой появление события Б, но и само событие Б может явиться лишь тогда, когда до него уже име­ло место событие А. В двух приведенных выше примерах это не так. Вполне можно представить себе такой случай, что часы ос­тановятся после того, как стрелка окажется на цифре 1, и тогда она не попадет на цифру 2; может случиться экологическая ката-

554


_____ Глава 2. Виды научных психолого-педагогических исследований _

строфа, которая сделает климат постоянным, например, превра­тит его в вечную зиму или в вечное лето, и в этом случае законо­мерная смена времен года не наступит. В том и в другом приме­рах подлинные причины последовательного появления событий находятся вне тех событий, которые мы рассматриваем; они-то и придают закономерный характер временной последовательнос­ти этих событий.

Ошибки могут иметь место не только в доказательстве, но и в интерпретации связей как причинно-следственных, и для того, чтобы избежать подобных ошибок, рекомендуется организовы­вать и проводить психолого-педагогический эксперимент в со­ответствии с одной из заранее продуманных логических схем до­казательства, гарантирующих установление именно причинно-следственных зависимостей между изучаемыми переменными.

Основная логическая схема, позволяющая добиться такого ре­зультата, довольно простая. Она включает в себя проведение ис­следования не на одной, а на двух и более группах испытуемых, одна из которых является экспериментальной, а друше — конт­рольными. При этом экспериментальная группа предназначает­ся для установления достоверных статистических зависимостей между изучаемыми переменными, а контрольные группы — для того, чтобы, сравнивая получаемые в них результаты с теми, ко­торые установлены на экспериментальной группе, отклонять аль­тернативные причинно-следственному объяснения выявленной статистической зависимости. В простейшем случае реализации этой схемы берутся одна экспериментальная и одна контроль­ная группы. В экспериментальной группе выделяется и целенап­равленно изменяется переменная, которая рассматривается как вероятная причина объясняемого явления, а в контрольной груп­пе ничего этого не происходит. По завершении эксперимента оце­ниваются и сравниваются между собой изменения, которые в экс­периментальной и контрольной группах произошли в другой пе­ременной — зависимой, и если окажется, что в эксперименталь­ной группе эти изменения больше, чем в контрольной, то делает­ся вывод о том, что подлинной их причиной являются именно те вариации независимой переменной, которые имели место в экс­периментальной группе.

555


______ Часть II. Введение в научное психологическое исследование ___

Существует несколько вариантов практической реализации этой общей схемы. Рассмотрим их.

1. Метод единственного различия. Схематически он пред­ставляется следующим образом:



 


В данном случае фиксируется единственное различие между экспериментальной и контрольной группами по признаку Г, ко­торое по завершении эксперимента приводит к появлению един­ственного различия по признаку Е. На этом основании делается вывод о том, что изменение Г и есть причина замеченных изме­нений в Е.

2. Метод сопутствующих изменений (обобщенный вариант метода единственного различия).



 


Если, варьируя величину признака Г, мы неизменно получа­ем изменения только одного признака Е, то Г можно рассматри­вать в качестве наиболее вероятной причины Е.

3. Метод единственного сходства.

если при разноооразных вариациях признаков неизменным остается единственное сходство (в данном случае: Г—»Е), то со­ставляющие его переменные рассматриваются как причина (Г) и следствие (Е).

Для того, чтобы получаемые в экспериментальной и конт­рольной группах результаты были сопоставимыми, необходимо, чтобы эти группы по существенным признакам были эквивален­тными, т.е. такими, в которых уравнено влияние всех других ре­левантных переменных, кроме предполагаемой причины.

556


Глава 2. Виды научных психолого-педагогических исследований

Помимо общих логических схем, следование которым в орга­низации и проведении эксперимента помогает выявлению при­чинно-следственных связей, этой же цели могут служить планы экспериментов. Таких основных планов имеется два:

1. Эксперимент, организованный по плану типа «только после».

В подобного рода исследовании экспериментальные и конт­рольные группы оцениваются только по окончании эксперимента и не оцениваются в его начале. Если в итоге обнаруживается су­щественная разница между экспериментальной и контрольной группами, не имевшая место вначале, то можно сделать вывод о том, что отмеченные после эксперимента различия между этими группами были вызваны именно теми экспериментальными дей­ствиями, которые предпринимались в отношении эксперимен­тальной группы. Однако в этом случае в качестве альтернатив­ной остается и требует специального опровержения гипотеза о том, что изначально экспериментальная и контрольные группы не были одинаковыми, что и вызвало зафиксированные между ними различия по окончании эксперимента.

2. Эксперимент, организованный по плану типа «до и после».

В данном случае предполагаемые причины и следствия оце­ниваются и до, и после эксперимента и делается это как в экспе­риментальной, так и в контрольной группах. Тем самым заранее отбрасывается альтернативная гипотеза о том, что обнаружен­ные по окончании эксперимента различия между эксперимен­тальной и контрольной группами были вызваны теми различия­ми между ними, которые имелись еще до начала проведения экс­перимента.

Контрольные вопросы

1. Виды психолого-педагогических исследований и их осо­бенности.

2. Отличие экспериментального психолого-педагогическо­го исследования от всех остальных исследований.

3. Взаимосвязь и преемственность разных видов психолого-педагогических исследований.

 

4. Что такое цели, задачи и гипотезы эксперимента?

5. Логические требования, предъявляемые к гипотезам экс­периментального психолого-педагогического исследования.

557


Часть II. Введение в научное психологическое исследование

6. Ошибки в доказательствах, направленных на выяснение причинно-следственных связей между переменными, изу­чаемыми в эксперименте.

7. Способы избежать ошибок в доказательстве существова­ния причинно-следственной зависимости между перемен­ными.

8. Логика организации и проведения экспериментов, направ­ленных на доказательство причинно-следственных связей.

9. Экспериментальная и контрольная группы, их назначе­ние в психолого-педагогическом эксперименте.

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА

1. Фресс П., Пиаже Ж. Экспериментальная психология. Вып. I и II.
М., 1966.

[Формулировка гипотез: 116-120. Эксперимент: 120-148. На­блюдение (как метод экспериментального исследования): 106-115. Обработка и обобщение результатов (эксперимента): 148-193].

2. Роговин М.С. Психологическое исследование. Ярославль, 1979.

3. Роговин М.С, Залевский Г.В. Теоретические основы психоло­гического и патопсихологического исследования. Томск, 1988.

4. СочивкоД.В., Якунин В.А. Математические модели в психолого-педагогических исследованиях: Учебное пособие. Л., 1988. (Постановка проблемы. Предмет, объект и задачи исследования: 40-42. Проведение пилотажного исследования: 42-48. Общие сведения о планировании эксперимента: 56-62.)

Глава 3.

СТАТИСТИЧЕСКИЙ АНАЛИЗ

ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ И СПОСОБЫ

НАГЛЯДНОГО ПРЕДСТАВЛЕНИЯ РЕЗУЛЬТАТОВ

Краткое содержание

Методы первичной статистической обработки результатов эксперимен­та. Общее представление о методах статистического анализа эксперименталь­ных данных, назначение этих методов. Деление статистических методов на

558


______ Глава 3. Статистический анализ экспериментальных данных ___

первичные и вторичные. Основные показатели, получаемые в результате пер­вичной обработки экспериментальных данных. Вычисление средней арифме­тической. Определение дисперсии. Установление примерного распределения данных. Определение моды. Характеристика нормального распределения. Вы­числение интервалов.

Методы вторичной статистической обработки результатов эксперимента. Способы вторичной статистической обработки результатов исследования. Ре­грессионное исчисление. Сравнение средних величин разных выборок. Срав­нение частотных распределений данных. Сравнение дисперсий двух выборок. Установление корреляционных зависимостей и их интерпретация. Понятие о факторном анализе как методе статистической обработки.

Способы табличного и графического представления результатов экспе­римента. Виды таблиц и их построение. Графическое представление экспери­ментальных данных. Гистограммы и их применение на практике.

МЕТОДЫ ПЕРВИЧНОЙ СТАТИСТИЧЕСКОЙ ОБРАБОТКИ РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА

Методами статистической обработки результатов экспери­ мента называются математические приемы, формулы, способы количественных расчетов, с помощью которых показатели, по­ лучаемые в ходе эксперимента, можно обобщать, приводить в си­ стему, выявляя скрытые в них закономерности. Речь идет о та­ких закономерностях статистического характера, которые су­ществуют между изучаемыми в эксперименте переменными ве­ личинами.

Некоторые из методов математико-статистического анализа позволяют вычислять так называемые элементарные матема­ тические статистики, характеризующие выборочное распреде­ ление данных, например выборочное среднее, выборочная диспер­ сия, мода, медиана и ряд других. Иные методы математической статистики, например дисперсионный анализ,регрессионный ана­лиз, позволяют судить о динамике изменения отдельных статис­ тик выборки. С помощью третьей группы методов, скажем, кор­реляционного анализа, факторного анализа, методов сравнения выборочных данных, можно достоверно судить о статистических связях, существующих между переменными величинами, кото­рые исследуют в данном эксперименте.

559


______ Часть II. Введение в научное психологическое исследование ___

Все методы математико-статистического анализа условно де­лятся на первичные и вторичные1. Первичными называют мето­ды, с помощью которых можно получить показатели, непосред­ственно отражающие результаты производимых в эксперимен­те измерений. Соответственно под первичными статистически­ми показателями имеются в виду те, которые применяются в са­мих психодиагностических методиках и являются итогом на­чальной статистической обработки результатов психодиагности­ки. Вторичными называются методы статистической обработки, с помощью которых на базе первичных данных выявляют скры­тые в них статистические закономерности.

К первичным методам статистической обработки относят, на­пример, определение выборочной средней величины, выбороч­ной дисперсии, выборочной моды и выборочной медианы. В чис­ло вторичных методов обычно включают корреляционный ана­лиз, регрессионный анализ, методы сравнения первичных ста­тистик у двух или нескольких выборок.

Рассмотрим методы вычисления элементарных математичес­ких статистик, начав с выборочного среднего.

Выборочное среднее значение как статистический показатель представляет собой среднюю оценку изучаемого в эксперименте психологического качества. Эта оценка характеризует степень его развития в целом у той группы испытуемых, которая была под­вергнута психодиагностическому обследованию. Сравнивая не­посредственно средние значения двух или нескольких выборок, мы можем судить об относительной степени развития у людей, составляющих эти выборки, оцениваемого качества.

Выборочное среднее определяется при помощи следующей формулы:

1 Приводимые здесь определения и высказывания не всегда являются до­статочно строгими с точки зрения теории вероятностей и математической ста­тистики как сложившихся областей современной математики. Это сделано для лучшего понимания данного текста студентами, не подготовленными в облас­ти математики:

560


______ Глава 3. Статистический анализ экспериментальных данных ___

где х — выборочная средняя величина или среднее арифметичес­кое значение по выборке; п — количество испытуемых в выбор­ке или частных психодиагностических показателей, на основе ко­торых вычисляется средняя величина; хк — частные значения по­казателей у отдельных испытуемых. Всего таких показателей п, поэтому индекс k данной переменной принимает значения от 1 до п; Е — принятый в математике знак суммирования величин тех переменных, которые находятся справа от этого знака. Выра­жение X х к соответственно означает сумму всех х с индексом k от

1 до п.

Пример. Допустим, что в результате применения психодиаг­ностической методики для оценки некоторого психологическо­го свойства у десяти испытуемых мы получили следующие част­ные показатели степени развитости данного свойства у отдель­ных испытуемых: xi = 5, х2 = 4, х3 = 5, х4 = 6, х5 = 7, *6 = 3, х7 = 6, х& = 2, хд= 8, хт = 4. Следовательно, п = 10, а индекс k меняет свои значения от 1 до 10 в приведенной выше формуле. Для данной выборки среднее значение1, вычисленное по этой формуле, бу­дет равно:

В психодиагностике и в экспериментальных психолого-пе­дагогических исследованиях среднее, как правило, не вычисля­ется с точностью, превышающей один знак после запятой, т.е. с большей, чем десятые доли единицы. В психодиагностических обследованиях большая точность расчетов не требуется и не име­ет смысла, если принять во внимание приблизительность тех оце­нок, которые в них получаются, и достаточность таких оценок для производства сравнительно точных расчетов.

Дисперсия как статистическая величина характеризует, на­сколько частные значения отклоняются от средней величины в данной выборке. Чем больше дисперсия, тем больше отклонения

1 В дальнейшем, как это и принято в математической статистике, с целью сокращения текста мы будем опускать слова «выборочное» и «арифметичес­кое» и просто говорить о «среднем» или «среднем значении».

561


______ Часть II. Введение в научное психологическое исследование ____

или разброс данных. Прежде чем представлять формулу для рас­четов дисперсии, рассмотрим пример. Воспользуемся теми пер­вичными данными, которые были приведены ранее и на основе которых вычислялась в предыдущем примере средняя величи­на. Мы видим, что все они разные и отличаются не только друг от друга, но и от средней величины. Меру их общего отличия от средней величины и характеризует дисперсия. Ее определяют для того, чтобы можно было отличать друг от друга величины, име­ющие одинаковую среднюю, но разный разброс. Представим се­бе другую, отличную от предыдущей выборку первичных значе­ний, например такую: 5, 4, 5, 6, 5, 6, 5, 4, 5, 5. Легко убедиться в том, что ее средняя величина также равна 5,0. Но в данной вы­борке ее отдельные частные значения отличаются от средней го­раздо меньше, чем в первой выборке. Выразим степень этого отличия при помощи дисперсии, которая определяется по следую­щей формуле:



 


где S — выборочная дисперсия, или просто дисперсия;



— выражение, означающее, что для всех хк от перво-


го до последнего в данной выборке необходимо вычислить раз­ности между частными и средними значениями, возвести эти раз­ности в квадрат и просуммировать;

п — количество испытуемых в выборке или первичных зна­чений, по которым вычисляется дисперсия.


562


Определим дисперсии для двух приведенных выше выборок частных значений, обозначив эти дисперсии соответственно ин­дексами 1 и 2:'


______ Глава 3, Статистический анализ экспериментальных данных ___

Мы видим, что дисперсия по второй выборке (0,4) значитель­но меньше дисперсии по первой выборке (3,0). Если бы не было дисперсии, то мы не в состоянии были бы различить данные вы­борки.

Иногда вместо дисперсии для выявления разброса частных дан­ных относительно средней используют производную от дисперсии величину, называемую выборочное отклонение. Оно равно квадрат­ному корню, извлекаемому из дисперсии, и обозначается тем же

самым знаком, что и дисперсия, только без квадрата— S:

Медианой называется значение изучаемого признака, кото­рое делит выборку, упорядоченную по величине данного призна­ ка, пополам. Справа и слева от медианы в упорядоченном ряду остается по одинаковому количеству признаков. Например, для выборки 2, 3, 4, 4, 5, 6, 8, 7, 9 медианой будет значение 5, так как слева и справа от него остается по четыре показателя. Если ряд включает в себя четное число признаков, то медианой будет сред­нее, взятое как полусумма величин двух центральных значений ряда. Для следующего ряда 0, 1,1, 2, 3, 4, 5, 5, 6, 7 медиана будет равна 3,5.

Знание медианы полезно для того, чтобы установить, явля­ется ли распределение частных значений изученного признака симметричным и приближающимся к так называемому нормаль­ному распределению. Средняя и медиана для нормального рас­пределения обычно совпадают или очень мало отличаются друг от друга. Если выборочное распределение признаков нормаль­но, то к нему можно применять методы вторичных статистичес­ких расчетов, основанные на нормальном распределении данных. В противном случае этого делать нельзя, так как в расчеты могут вкрасться серьезные ошибки.

Если в книге по математической статистике, где Описывает­ся тот или иной метод статистической обработки, имеются ука­зания на то, что его можно применять только к нормальному или близкому к нему распределению признаков, то необходимо не-

563


______ Часть II. Введение в научное психологическое исследование ___

укоснительно следовать этому правилу и полученное эмпиричес­кое распределение признаков проверять на нормальность. Если такого указания нет, то статистика применима к любому распре­делению признаков. Приблизительно судить о том, является или не является полученное распределение близким к нормальному, можно, построив график распределения данных, похожий на те, которые представлены на рис. 72. Если график оказывается бо­лее или менее симметричным, значит, к анализу данных можно применять статистики, предназначенные для нормального рас­пределения. Во всяком случае, допустимая ошибка в расчетах в данном случае будет относительно небольшой.

Приблизительные картины симметричного и несимметрич­ного распределений признаков показаны на рис. 72, где точками mi и т2 на горизонтальной оси графика обозначены те величины

признаков, которые соответствуют медианам, а х\ и Х2 — те, ко­торые соответствуют средним значениям.

Рис. 72. Графики симметричного и не­симметричного распределения при­знаков: I — симметричное распределе­ние (все относящиеся к нему элемен­тарные статистики обозначены с по­мощью индекса 1); II — несимметрич­ное распределение (его первичные ста­тистики отмечены на графике индек­сом 2).

Мода еще одна элементар­ная математическая статистика и характеристика распределе­ния опытных данных. Модой называют количественное зна­чение исследуемого признака, наиболее часто встречающееся в выборке. На графиках, пред­ставленных на рис. 72, моде со­ответствуют самые верхние точки кривых, вернее, те значе­ния этих точек, которые распола­гаются на горизонтальной оси. Для симметричных распреде­лений признаков,' в том числе для нормального распределе­ния, значение моды совпадает со значениями среднего и меди­аны. Для других типов распре­делений, несимметричных, это не характерно. К примеру, в по­следовательности значений признаков 1,2, 5,2,4, 2,6,7,2 модой

564


Глава 3. Статистический анализ экспериментальных данных

является значение 2, так как оно встречается чаще других значе­ний — четыре раза.

Иногда исходных частных первичных данных, которые под­лежат статистической обработке, бывает довольно много, и они требуют проведения огромного количества элементарных ариф­метических операций. Для того чтобы сократить их число и вмес­те с тем сохранить нужную точность расчетов, иногда прибегают к замене исходной выборки частных эмпирических данных на интервалы. Интервалом называется группа упорядоченных по ве­ личине значений признака, заменяемая в процессе расчетов сред­ ним значением.

Пример. Представим следующий ряд частных признаков: О, 1,1,2,2,3,3,3,4,4,5,5,5,5,6,6,6,7,7,8,8,8,9,9,9,10,10,11,11, 11. Этот ряд включает в себя 30 значений. Разобьем представ­ленный ряд на шесть подгрупп по пять признаков в каждом. Пер­вая подгруппа включит в себя первые пять цифр, вторая — сле­дующие пять и т.д. Вычислим средние значения для каждой из пяти образованных подгрупп чисел. Они соответственно будут равны 1,2; 3,4; 5,2; 6,8; 8,6; 10,6. Таким образом, нам удалось свести исходный ряд, включающий тридцать значений, к ряду, содер­жащему всего шесть значений и представленному средними ве­личинами. Это и будет интервальный ряд, а проведенная проце­дура — разделением исходного ряда на интервалы. Теперь все статистические расчеты мы можем производить не с исходным рядом признаков, а с полученным интервальным рядом, и ре­зультаты в равной степени будут относиться к исходному ряду. Однако число производимых в ходе расчетов элементарных арифметических операций будет гораздо меньше, чем количест­во тех операций, которые с этой же целью пришлось бы проде­лать в отношении исходного ряда признаков. На практике, со­ставляя интервальный ряд, рекомендуется руководствоваться следующим правилом: если в исходном ряду признаков больше чем тридцать, то этот ряд целесообразно разделить на пять-шесть интервалов и в дальнейшем работать только с ними.

Для проверки сказанного проведем пробное вычисление сред­него значения по приведенному выше ряду, составляющему трид­цать чисел, и по ряду, включающему только интервальные сред-

565


Часть II. Введение в научное психологическое исследование

ние значения. Полученные цифры с точностью до двух знаков после запятой будут соответственно равны 5,97 и 5,97, т.е. явля­ются одинаковыми.





Поделиться с друзьями:


Дата добавления: 2018-10-14; Мы поможем в написании ваших работ!; просмотров: 211 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Самообман может довести до саморазрушения. © Неизвестно
==> читать все изречения...

2535 - | 2391 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.