Моделирование – это один из важнейших методов научного познания, с помощью которого создается модель (условный образ) объекта исследования. Сущность его заключается в том, что взаимосвязь исследуемых явлений и факторов передается в форме конкретных математических уравнений. Процесс построения математической модели включает в себя следующие типовые этапы:
• формулирование целей моделирования; • качественный анализ экосистемы, исходя из этих целей;
• формулировку законов и правдоподобных гипотез относительно структуры экосистемы, механизмов ее поведения в целом или отдельных частей (при самоорганизации эти законы "находит" компьютер);
• идентификацию модели (определение ее параметров);
• верификацию модели (проверку ее работоспособности и оценку степени адекватности реальной экосистеме);
• исследование модели (анализ устойчивости ее решений, чувствительности к изменениям параметров и пр.) и эксперимент с ней.
Если вспомнить еще об уникальности экосистем, невозможности их редукции, сложности проведения системных экспериментов, значительной погрешности и малочисленности измерений многих экологических параметров, неполноте наших знаний о механизмах функционирования экосистем, то становятся понятны сомнения ряда специалистов относительно возможностей экологического прогнозирования, в частности, и экологического моделирования, вообще. В.В. Налимов писал, что можно “... как блестящие идеи, так и научные нелепости одинаковым образом облечь во впечатляющий мундир формул и теорем... Наряду с математизацией знаний происходит и математизация глупостей; язык математики, как ни странно, оказывается пригодным для выполнения любой из этих задач”. Однако, при правильном применении, математический подход не отличается существенно от подхода, основанного на "традиционном здравом смысле". Математические методы просто более точны и в них используются более четкие формулировки и более широкий набор понятий. В конечном счете, они должны быть совместимы с обычными словесными рассуждениями, хотя, вероятно, идут дальше их.
В тех случаях, когда установлено постоянное и удовлетворительно точное согласие между математической моделью и опытом, такая модель приобретает практическую ценность. Эта ценность может быть достаточно велика, вне зависимости от того, представляет ли сама модель чисто математический интерес. Итак, сформулируем еще один принцип математического моделирования в экологии: модель должна иметь конкретные цели.
Условно такие цели можно подразделить на три основных группы:
1) компактное описание наблюдений;
2) анализ наблюдений (объяснение явлений);
3) предсказание на основе наблюдений (прогнозирование).
Нередко бывает так, что одну и ту же модель можно воспринимать сразу в трех "ипостасях", т.е. используя ее и для описания, и для анализа, и для предсказания. К примеру, логистической регрессией мы описываем параметры генеральной совокупности, но одновременно мы и анализируем взаимосвязи в этой совокупности, результат же логистической регрессии мы применяем для предсказания. Показано, что для сложных свойств сложных систем нельзя ожидать аналогичного успеха: одна модель (один закон) будет не в состоянии одновременно удовлетворительно выполнять как объяснительную, так и предсказательную функцию (принцип разделения функций описания и прогнозирования). Для объяснения необходимы простые модели, и здесь, по меткому выражению У.Р. Эшби, “...в будущем теоретик систем должен стать экспертом по упрощению”. Что касается экологического прогнозирования, то “сложность модели для сложных объектов принципиально необходима”.