Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Сенсорно- перцептивные пюцессы 8 страница




Как мы только что видели, у восприятия, непосредственно вклю­ченного в действие, возможно, нет памяти в привычном смысле слова — оно функционирует в режиме «здесь и теперь»36. Иными словами, хотя

35 Кроме того, накапливаются данные, что именно эти теменные структуры преиму­
щественно являются целью так называемых магноцеллулярных (см. 3.2.3) каналов, по­
зволяющих сравнительно быстро передавать зрительную сенсорную информацию о круп­
ных движущихся объектах (Le et al., 2002)

36 Упоминание памяти «в традиционном смысле слова» обусловлено тем, что в послед­
ние годы обнаружено значительное число эффектов так называемой имплицитной памя­
ти,
проявляющейся косвенно, по изменению параметров перцептивных и сенсомотор-
ных процессов. Отличие традиционной, эксплицитной памяти и имплицитного запоми­
нания будет подробно рассмотрено нами в одной из следующих глав (см. 5.1.3). Процес­
сы имплицитного запоминания лежат в основе многих форм перцептивного научения, в    „. .
частности, связанного с адаптацией к сенсорным искажениям (см. 3.4.3). Имплицитное


эти перцептивные процессы требуют определенного времени для их ре­ализации и точного тайминга, функционально они осуществляются как бы в «постоянном настоящем». Восприятие стабильного простран­ственного окружения также не связано с существованием сколько-ни­будь детального, удерживаемого в памяти образа объектов (см. 3.1.1). Вместо этого есть очень быстрый, требующий менее 100 мс процесс ло­кализации самих объектов. Такое отсутствие опоры на память можно объяснить двояко. С функциональной точки зрения «внешний мир — лучшая модель самого себя» (см. 9.3.2). С точки зрения нейроанатоми-ческих связей, перцептивная обработка в дорзальном потоке осуществ­ляется в структурах, удаленных от механизмов, обеспечивающих эксп­лицитное запоминание, то есть от височных долей и расположенного непосредственно под ними гиппокампа (см. 5.3.2).

Иначе обстоит дело с процессами фокальной, внимательной обра­ботки, ведущими к детальному восприятию и идентификации предме­тов. Эти процессы вовлекают в основном регионы височных долей, рас­положенные ниже и несколько спереди от теменных долей коры. Этот «вентральный поток» переработки информации, с одной стороны, контактирует с гиппокампом и его окружением, а с другой — со струк­турами, обеспечивающими восприятие и порождение речи (см. 7.1.1). Перцептивная обработка опирается здесь не только на сенсорную ин­формацию, но и на семантическую память и одновременно сама служит основой для формирования фиксируемых в памяти репрезентаций от­дельных ситуаций и эпизодов. Таким образом, вентральный поток ока­зывается идеальным субстратом для того, что было названо выше «вос­приятие для познания». Основные признаки двух зрительных систем приведены в табл. 3.3. Аналогичное разделение, как отмечалось, может быть проведено сегодня также по отношению к подсистемам слухового восприятия.

О связях височных долей с когнитивными механизмами говорят нарушения, возникающие при их поражениях, среди которых, наряду с апперцептивной агнозией (агнозия на форму или объектная агнозия — на­рушение узнавания предметов), встречаются также ассоциативная агнозия (неспособность семантически категоризовать предмет, форма которого, судя по зарисовкам, воспринимается), оптическая афазия (неспособность назвать предмет при сохранности практического знания о его примене­нии) и категориально-специфическая агнозия. В последнем случае речь

запоминание характерно также для аффективной информации (см. 5.3.2). Исследования восприятия боли свидетельствуют о том, что и в этом случае оценки интенсивности ощу­щений не опираются на процессы суммирования во времени. Хирургическая операция, продолжавшаяся лишь 6 минут, может, быть оценена как более болезненная, чем опера­ция, занявшая 66 минут, если некоторое одиночное пиковое состояние боли в первом случае оказалось выше, чем каждый из нескольких пиковых состояний и в целом более 242   высокий болевой фон во втором (Kahneman et al., 1993).


Таблица 3.3. Две зрительные системы — перечень контрастирующих признаков (по: \felichkovskyetal., 2005)

 

Зрительная система Фокальная Амбьентная
Структуры коры Вентральный поток Дорзальный поток
Функция Что Где/Как
Включенность в движение Меньше Больше
Осознание/Память Больше Меньше или отсутствует
Временные свойства Медленая Быстрая
Чувствительность к освещению Высокая Низкая
Пространственное разрешение Высокое Низкое

идет о нарушениях узнавания объектов, входящих в определенную се­мантическую категорию — инструментов, животных или хорошо знако­мых лиц. Подобные нарушения возникают при повреждении разных участков нижневисочных отделов коры.

Следует отметить, что некоторые из этих, связанных с поражения­ми височных долей, нарушений предметного восприятия частично компенсируются в ходе осуществляемых с ними действий. Наблюдения за пациентами с агнозией на форму показывают, что иногда они могут демонстрировать рудиментарное восприятие формы в ходе практичес­ких манипуляций с предметами. Так, при инструкции взять предмет, форму которого пациентка не в состоянии определить, она, тем не ме­нее, может иногда правильно адаптировать пальцы подводимой к пред­мету руки (Milner & Goodale, 1995). Такое различение формы (или, ско­рее, общих очертаний), однако, оказывается ограниченным, не позволяющим учитывать внутреннюю геометрию предмета (Dijkerman, Milner & Carey, 1998). Этот вопрос продолжает в настоящее время дис­кутироваться, так как теменные области, безусловно, в основном специ­ализированы на обследовании пространственного окружения и локали­зации объектов. В особенности структуры, расположенные в их верхних медианных зонах (близких к продольной борозде, разделяющей левое и правое полушарие), демонстрируют поданным функционального карти­рования мозга повышенную активацию при широком, «амбьентном» об­следовании окружения. Селективное — фокальное — внимание к дета-. лям, цвету и форме предметов вызывает подавление такой активации (Raichle, 1998).


243


Анализ случаев агнозии на форму показывает, что нарушения выс­ших форм восприятия оставляют относительно сохранными более эле­ментарные процессы пространственного восприятия. Интересно, что обратное скорее неверно — поражения затылочных долей часто ведут к массивным нарушениям восприятия формы и узнавания. Эти наруше­ния известны в нейропсихологической литературе как симулътаноагно- ' зия и синдром Балинта11. В всех этих случаях пациенты не могут интег­рировать отдельные детали в целостный образ и неспособны увидеть более одного объекта в относительно простой их комбинации (по прин­ципу «либо серп, либо молот» при восприятии старого советского гер­ба, включавшего изображения серпа и молота). Типичны, впрочем, как раз попытки угадать по отдельным деталям целое — пациент видит круглые дуги рукояток ножниц и заявляет, что видит очки. Видимый мир как бы распадается на отдельные детали. А.Р. Лурия оставил клас­сическое описание этих нарушений в эссе о «человеке с раздробленным миром», а один из наиболее ярких его последователей, американский нейропсихолог Оливер Закс описал в своих работах «человека, спутав­шего свою жену со шляпой» (проблемы этого пациента, правда, ослож­нялись также выраженной прозопагнозией, то есть нарушенным узнава­нием лиц — см. 3.3.1).

Приведенные данные говорят об уровневых взаимоотношениях меж­ду механизмами восприятия пространственного положения (уровень С) и восприятия предметов (уровень D). Подобные взаимоотношения на­блюдаются при восприятии событий, когда развертывание познаватель­ной активности осуществляется в режиме «снизу вверх». В этих случаях говорят также об использовании непроизвольного внимания (см. 4.4.1). Но вовлечение механизмов восприятия в работу часто происходит в проти­воположном направлении, так сказать «сверху вниз» (или в порядке «об­ратной иерархии», reverse hierarchy — Hochstein & Ahissar, 2002). Это ти­пично для задач активного поиска, связанных, как принято говорить в психологии, с использованием произвольного внимания (см. 4.4.2). В чис­то временном аспекте работа с информацией об индивидуальном пред­мете (скажем, «будильник?») может предшествовать тогда процессам пространственной локализации («на ночном столике»). Пространствен­ный поиск может легко управляться и абстрактной семантической ин­формацией более высокого уровня Ε (например, при поиске «посуды»), а даже иметь ситуативно-творческий характер, включающий элементы мышления (уровень F — см. 8.4.3). Так, пытаясь найти «то, что можно по­ложить под проектор», можно значительно облегчить себе задачу, если

37 У полностью здоровых людей резкое сужение размеров функционального поля зре­ния, или феномен туннельного зрения, наблюдается при высокой степени эмоционально­го стресса. Возможно, туннельное зрение объясняется связью дорзальной системы коры (и, следовательно, амбьентного восприятия) с базальными ганглиями, участвующими в 244   регуляции эмоций и стресса и крайне чувствительными к ним (см. 9.4.3).


догадаться, что любая достаточно толстая и раскрытая соответствующим образом книга легко послужит такой подставкой.

Различение уровней восприятия имеет большое практическое зна­чение и за пределами нейропсихологии. Поскольку в условиях слабой освещенности избирательно затрудняется идентификация предметов и событий, тогда как широкое амбьентное восприятие, связанное с ори­ентацией в пространстве и управлением собственными движениями, может оставаться относительно сохранным, у водителей возникает опасная иллюзия отсутствия каких-либо существенных изменений спо­собности управлять автомобилем в сумерках и скорость движения обыч­но не снижается. Если при этом внезапно возникает задана идентифика­ ции — тени, припаркованной машины или пешехода, водитель может не справиться с ее решением. Число аварий со смертельным исходом в су­мерках примерно в 4 раза больше, чем при дневном освещении. Харак­терно, что в этих условиях примерно 25% водителей, только что сбив­ших пешехода, утверждают, что вообще никого на дороге не видели38. Разделение двух уровней (или модусов) зрительной переработки инфор­мации справедливо рассматривается в прикладной психологии как «скрытый фактор-убийца», ответственный за высокий процент серьез­ных аварий в ночное время (Leibowitz, 1996).

В самое последнее время появились новые возможности лаборатор­ного исследования восприятия и поведенческих ответов на внезапную опасность. Этот вопрос имеет давнюю историю. На заре научной психо­логии Уильям Джеймс иллюстрировал восприятие опасности случаем внезапной встречи с медведем в лесу. Примерно в том же плане, но уже экспериментально один из основателей современной когнитивной ней­ропсихологии Дональд Хэбб исследовал реагирование высших приматов на змею. Конечно, в современном урбанизированном мире эти приме­ры носят скорее воображаемый характер. Большинство угрожающих нам опасностей имеют техногенное происхождение, и среди них выделяют­ся те, которые возникают при автомобильном движении. Достаточно сказать, что только на дорогах России ежегодно гибнет население сред­него по величине города, а США потеряли в автодорожных катастрофах больше людей, чем во всех войнах своей истории.

Для того чтобы экспериментально изучать поведение человека в си­туации опасности, нужно найти некоторый компромисс между вообра­жением и реальностью. Таким компромиссом является упоминавшаяся выше технология виртуальной реальности. В одном из экспериментов мы

38 Надо сказать, что имеются два других фактора, вносящих вклад в эту статистику.
Прежде всего это утомление и сонливость, максимальные в предутренние часы (время,
называемое в голландском языке «собачей вахтой»). Еще одна причина связана с мета-
когнитивными процессами
(см. 8.1.1). Пешеход на ночной дороге обычно лучше адаптиро­
ван к темноте, чем водитель, полноценной зрительной адаптации которого препятствует
подсветка приборов и яркая зона освещенности перед машиной. Тем не менее пешеходы,
по-видимому, полагают, что если они отчетливо видят движущийся автомобиль, то, по
крайней мере, столь же отчетливо их должен видеть и водитель.                                                  245



 


 


246


Рис. 3.25. Две потенциально опасные ситуации в экспериментах с поездками по вирту­альному городу А Перекресток со светофором, Б Пешеход на краю дороги (по" Velichkovsky et al, 2002b).

создали в нашей лаборатории условия, при которых можно было дли­тельное время «ездить» при дневном освещении по довольно реалисти­ческому виртуальному городу, время от времени попадая в различные непростые ситуации. Рис. 3.25 показывает два потенциально опасных эпизода — приближение к перекрестку со светофором (А) и пешехода, стоящего на краю дороги (Б). Каждая из подобных потенциальных опас­ностей могла внезапно превратиться в непосредственную угрозу, когда у самого перекрестка зеленый свет менялся на красный или же пешеход начинал быстро переходить дорогу. Кроме таких опасных событий, зри­тельное окружение испытуемых постоянно изменялось: в зависимости от скорости (то есть от нажатия ногой на соответствующую педаль) уси­ливалось или замедлялось оптическое «разбегание» видимой панорамы, по дорогам ездили другие автомобили (иногда по той же полосе," но на приличном расстоянии), а другие пешеходы двигались по пешеходным дорожкам независимо от дорожной ситуации.

Вся эта «жизнь» находилась под контролем нескольких связанных между собой компьютеров. Более того, миниатюрные телекамеры с вы­сокой скоростью и точностью непрерывно регистрировали движения головы и глаз водителя. Нас интересовало, как водитель и его глаза реа­гируют на оба класса опасных событий. Следующий вопрос состоял в том, насколько стабильными эти реакции остаются во времени. В самом деле, после классических работ психофизиолога E.H. Соколова (подроб­но изучившего ориентировочный рефлекс, возникающий в ответ на не­ожиданное изменение ситуации — см. 4.4.1) хорошо известно, что мно­гие реакции организма, связанные с ориентировкой в окружении, могут постепенно ослабевать и даже практически полностью угасать.

Чтобы ответить на эти вопросы, мы попросили 12 опытных водите­лей в течение 5 последовательных недель «ездить» по одному и тому же виртуальному маршруту. «Статические» компоненты окружения при этом оставались неизменными, все динамические события были более или менее случайными. Каждая такая поездка продолжалась примерно



 


 


-4-3-2-1 0


2 3 4 5


-4-3-2-1012345


 


Рис. 3.26. Изменение продолжительности зрительных фиксаций до, в момент и после возникновения опасного события в случаях успешного реагирования А. Красный свет светофора, Б Переходящий улицу пешеход (по. Velichkovsky et al., 2002b).

40 мин. Рис. 3.26 показывает динамику продолжительности зрительных фиксаций непосредственно до (4 фиксации), в момент (эта фиксация обозначена «0») и сразу после критического события во всех тех случа­ях, когда водители успешно тормозили или объезжали (эпизоды с пе­шеходом) опасность. Три горизонтальные линии соответствуют рефе­рентным (baseline) порогам 5, 50 и 95% средних продолжительностей фиксаций на различных участках поездок, не содержавших опасные эпизоды. Легко видеть, что оба класса критических событий вызывают мощную и единообразную реакцию удлинения фиксации, причем эта реакция совершенно не угасает со временем. Относительно продол­жительные фиксации после события (от +1 до +3) коррелируют с произ­вольными движениями, в данном случае нажатием на педаль торможения. Особенно интересны те чрезвычайно редкие случаи (< 1%), когда во­дители не успевают отреагировать на острую опасность, пересекая пере­кресток на красный свет (N = 12; рис. 3.27А) или проезжая сквозь иду­щего пешехода (N = 9; рис. 3.27Б). Эти ошибки не могут быть объяснены недостатком времени на принятие решения, так как скорость обычно была даже несколько ниже нормативных (и достаточных) 50 км/час. Нельзя их объяснить и различиями оптических условий — на самом деле, совершая ошибки, водители часто прямо смотрели на светофор или на пешехода. Поскольку число таких наблюдений было столь незна­чительным, традиционный статистический анализ был невозможен. Од­нако его вполне заменяет прямое сравнение с референтными пороговы­ми значениями: продолжительность фиксаций в момент опасности явно превышает порог 95%, особенно для более драматического эпизода с пешеходом. Единственное реальное отличие по сравнению с данными, когда водители правильно реагировали на опасность, состоит в том, что при ошибочных ответах критическому событию предшествуют две-три короткие фиксации, продолжительность которых оказывается на уров­не или ниже порога 5%.


247



 


 


-4-3-2-10 1 2 3 4 5


-4-3-2-1012345


 


248


Рис. 3.27. Продолжительность фиксаций до, в момент и после возникновения опасного события в случаях совершения ошибки:'А. Проезд перекрестка на красный свет; Б. На­езд на пешехода (по: Velichkovsky et al., 2002b).

Почему эти непосредственно предшествующие опасному событию фиксации ассоциируются с ошибками? Для ответа на этот вопрос нужно вернуться к рассмотренным выше данным о возможной связи между длительностью фиксации и уровнем обработки (см. 3.4.1). Фиксации, непосредственно предшествующие ошибкам, имеют дли­тельность порядка 200 мс и, следовательно, принадлежат сегменту ам-бьентного восприятия. В случае адекватных реакций фиксации перед критическим событием с их средней длительностью около 400 мс сви­детельствуют о фокальном, или внимательном, анализе ситуации. При­чина ошибок состоит, видимо, именно в переключении с фокальной на преимущественно амбьентную обработку. Такие переключения, могут кратковременно наблюдаться и при рассматривании картин Рембран­дта, но в условиях дорожного движения они дополнительно провоци­руются постоянными изменениями видимого окружения — появлением новых объектов, изменением их взаимного положения и т.д. Водители не успевают своевременно идентифицировать опасность, поскольку крити­ческие события случаются во время перцептивной обработки, задачей которой является нечто другое, прежде всего общая пространственная ориентация. Эти новые данные позволяют надеяться на возможность ранней диагностики эпизодов с высокой вероятностью ошибки и на ее использование для адаптивной технической поддержки водителя (см. 7.4.3).


3.4.3 Развитие и специализация восприятия

Исследования раннего онтогенеза восприятия относятся к числу наи­более увлекательных глав экспериментальной психологии, нейрофи­зиологии и философии. Длительное время именно философские пози­ции определяли характер ведущихся по этой проблеме дискуссий. Эмпирицисты, прежде всего Джордж Беркли, выдвинули тезис о пол­ной неорганизованности ранних сенсорных впечатлений младенца, которые упорядочиваются только в ходе их ассоциации с моторными ощущениями. Эта точка зрения особенно сильно повлияла на психо­логию. В 19-м веке ее разделяли Гельмгольц и Джеймс, который писал, что окружающий мир представляет собой для новорожденного «blooming boozing confusion» (читатели, знающие английский язык, могут попы­таться перевести это замечательное определение сами). Жан Пиаже — крупнейший специалист прошедшего столетия в области психологии развития — также по сути дела солидаризировался с данной точкой зре­ния. Он, в частности, высказал предположение, что до опыта двигатель­ных манипуляций с предметами у младенца нет их восприятия как не­которых объективных, независимых от него сущностей.

Во всех этих пунктах противоположной (и первоначально столь же малодоказательной) точки зрения придерживались представители на­правлений, тяготеющих к кантианскому рационализму (гештальтпсихо-логия) и к прямому реализму (экологический подход Гибсона). Фило­софским основанием для отрицания роли эмпирического, в частности двигательного, опыта в процессах восприятия были взгляды Канта на априорный, то есть существующий до всякого опыта характер наиболее общих категорий нашего рассудка, таких как пространство и время (см. 1.1.3). Когнитивные исследования восприятия впервые позволили про­верить справедливость этих взглядов на природу ранних перцептивных достижений.

При проведении подобных исследований приходится целиком опираться на косвенные, поведенческие и физиологические индикато­ры восприятия. Большое значение имеют также сравнительные, в том числе и нейрофизиологические эксперименты на животных. Все эти источники говорят о том, что сенсорные возможности новорожденного сильно редуцированы — очень низка острота слуха и зрения, нет вос­приятия цвета, нет и достаточной бинокулярной координации, которая развивается в течение первых 6 недель жизни39. Наконец, предельно ог­раниченными длительное время остаются сенсомоторные возможности,

39 Тем не менее, по-видимому, возможна очень ранняя, в первые недели после рожде­
ния, имитация сенсомоторного поведения другого типа высовывания языка в ответ на
многочисленные показы языка взрослым. Считается, что в основе этой имитации может
лежать активность зеркальных нейронов, расположенных в нижних отделах премоторной
коры (см. 2.4.3). Эти результаты, как и вообще все результаты, полученные в исследова­
ниях с младенцами, требуют тщательной перепроверки.                                                                 249


так что, например, устойчивое схватывание предмета наблюдается на­чиная примерно с 4 месяцев. Вместе с тем, экспериментальные данные отнюдь не подтверждают тезис о полной неорганизованности самых первых восприятий. Напротив, вырисовывающаяся картина свидетель­ствует о поразительной перцептивной компетентности младенца уже в первые дни и недели жизни, особенно в отношении интермодального восприятия пространственного положения объектов.

В одном из экспериментов Джером Брунер и Барбара Козловска по­казывали младенцам в возрасте 3 недель на различном расстоянии яркие цветные предметы, которые отличались размером. Хотя в этом возрасте устойчивое схватывание объекта еще невозможно, исследователи обна­ружили повышенную моторную активность в плечевом поясе при предъявлении именно тех предметов, размеры и удаленность которых позволяли бы их схватить тремя месяцами позже. В другой известной работе был проведен анализ того, как младенцы этого же возраста реа­гируют на совпадающую и на противоречивую интермодальную инфор­мацию о пространственном положении. Если при приближении лица матери младенец слышал ее голос в совершенно другом направлении, это приводило к изменению обычно положительной эмоциональной ре­акции, о чем можно было судить по учащению ритма сердцебиений.

Ученик Гибсона Томас Бауэр (1981) провел эксперименты, в которых попытался прямо проверить предположение Пиаже о первоначальном солипсизме восприятия младенца. В этой работе ребенку в возрасте до 4 месяцев показывалась яркая игрушка. После того как становилось ясно, что игрушка замечена и вызвала интерес, она на глазах у малыша поме­щалась за стоящий перед ним непрозрачный экран. Исходный феномен, описанный Пиаже, состоит в том, что при этом младенец теряет инте­рес к игрушке и не предпринимает попыток ее достать. Это наблюдение, конечно, может говорить о том, что предмет, исчезающий из поля зре­ния младенца, перестает для него существовать. Возможными остаются, однако, и другие объяснения, например, что поведение ребенка обуслов­лено слабостью его сенсомоторных возможностей, а не отсутствием зна­ния о постоянстве существования предмета. Поэтому Бауэр продолжил эксперимент. Через короткий интервал после исчезновения игрушки (интервал был коротким, чтобы не тестировать память вместо восприя­тия) экран поднимался и ребенок мог видеть либо игрушку, либо пустое место. Если бы ребенок не знал о продолжении существования предме­та вне его восприятия, появление игрушки должно было бы вызвать у него реакцию удивления. Если же предметы субъективно существуют независимо от актуального восприятия, то удивление должно было бы вызвать отсутствие игрушки за экраном. Именно этот последний резуль­тат и был получен в эксперименте40.

40 В качестве показателей удивления в этих и аналогичных экспериментах использо­вались психофизиологические признаки ориентировочной реакции, которая будет рассмот-250   рена в следующей главе (см. 4.4.1).


финиш

старт

старт

Рис. 3.28. Траектории движений глаз младенца при рассматривании лица: А. Первые 2—3 недели жизни; Б. От 4 недель и старше.

Таким образом, многое в восприятии представляется врожденным, причем в плане самых общих категорий, таких как интермодальное про­странство и постоянство существования предметов. Чувствительность к нюансам в пространственной области сочетается со слабостью в вос­приятии формы. В самом деле, регистрация движений глаз показывает, что в первые недели жизни младенец фиксирует лишь наиболее замет­ные элементы внешних очертаний предметов и лиц (рис. 3.28). Поэтому предмет, положенный на другой предмет, несколько больших размеров перестает им восприниматься41. Даже когда к концу первого месяца жизни младенец начинает фиксировать внутренние детали обращенно­го к нему лица, его интерес привлекают прежде всего глаза — независи­мо от того, сколько глаз находится на лице и как они распределены по его поверхности. Это заставляет сделать вывод, что описанная в преды­дущих разделах этой главы дорзальная система восприятия (уровень С, без его моторных компонентов) в большей степени готова к функцио-


41 Близкие наблюдения многократно описаны в нейропсихологической литературе и в исследованиях поведения приматов с удаленной зрительной корой. Поэтому не исклю­чено, что речь идет о субкортикальных эффектах. Интересно, что фактически они реали­зуют правило, согласно которому «в одном месте пространства в данный момент времени может находиться только один предмет». Дальнейшее уточнение этого правила к концу первого — началу второго года жизни связано в разных культурах с использованием игру­шек «матрешечного типа», когда из одного предмета внезапно появляется другой (Бауэр, 1981).


251


252


нированию к моменту рождения, чем вентральная система (уровень D), которая дозревает и, возможно, отчасти формируется в течение первого полугодия жизни (см. 9.4.2).

Еще один аргумент против моторных теорий развития восприятия связан с наблюдениями за развитием детей с серьезными врожденны­ми аномалиями опорно-двигательного аппарата. При условии полно­ценной социальной поддержки, их перцептивное и интеллектуальное развитие не обнаруживает никаких выраженных отклонений от нор,мы. По-видимому, невозможность осуществлять собственные движения мо­жет быть компенсирована выполнением совместных действий с други­ми людьми. При такой широкой трактовке можно сохранить пред­ставление о том, что перцептивное развитие происходит в русле осуществляемой активности, которая «проявляет» и усиливает су­ществующие задатки, но, правда, тем самым иногда ограничивает их спектр. В главе, посвященной речи (см. 7.1.1), будут рассмотрены дан­ные о восприятии и произнесении фонем. Эти данные свидетельствуют о том, что специфическое языковое окружение ведет к исчезновению первоначально присутствовавшего различения некоторых речевых зву­ков. Так, столь важные для европейцев различия фонем /р/ и /л/ не яв­ляются смыслоразличительными в японском языке. Поэтому взрослые носители этого языка не способны к их дифференциации ни при про­изнесении, ни при узнавании.





Поделиться с друзьями:


Дата добавления: 2018-10-14; Мы поможем в написании ваших работ!; просмотров: 233 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...

3127 - | 2992 -


© 2015-2026 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.