Вариант 1 1. Даны вершины треугольника А(1;2;3), В(–1;3;2), С(7;–3;5). Найти: а) внутренний угол С, используя скалярное произведение; б) длину высоты, опущенной из вершины А на сторону СВ. 2. Даны вершины пирамиды A(3;1;4), B(–1;6;1), C(–1;1;6), D(0;4;–1). Найти: а) угол между ребрами АВ и А D; б) площадь грани АВС; в) проекцию вектора на вектор ; г) объем пирамиды. | Вариант 2 1. Даны вершины треугольника А(4;7;8), В(9;1;3), С(2;-4;1). Найти: а) внутренний угол В, используя скалярное произведение; б) длину высоты, опущенной из вершины С на сторону ВА. 2. Даны вершины пирамиды A(3;3;9), B(6;9;1), C(1;7;3), D(8;5;8). Найти: а) угол между ребрами АВ и А D; б) площадь грани АВС; в) проекцию вектора на вектор ; г) объем пирамиды. |
Вариант 3 1. Даны вершины треугольника А(10;3;1), В(1;4;2), С(3;9;2). Найти: а) внутренний угол А, используя скалярное произведение; б) длину высоты, опущенной из вершины В на сторону АС. 2. Даны вершины пирамиды A(3;5;4), B(5;8;3), C(1;9;9), D(6;4;8). Найти: а) угол между ребрами АВ и А D; б) площадь грани АВС; в) проекцию вектора на вектор ; г) объем пирамиды. | Вариант 4 1. Даны вершины треугольника А(2;4;1), В (1;3;6), С(5;3;1). Найти: а) внутренний угол С, используя скалярное произведение; б) длину высоты, опущенной из вершины А на сторону СВ. 2. Даны вершины пирамиды A(2;4;3), B(7;6;3), C(4;9;3), D(3;6;7). Найти: а) угол между ребрами АВ и А D; б) площадь грани АВС; в) проекцию вектора на вектор ; г) объем пирамиды. |
Вариант 5 1. Даны вершины треугольника А(8;2;3), В(4;6;10), С(3;–2;1). Найти: а) внутренний угол В, используя скалярное произведение; б) длину высоты, опущенной из вершины С на сторону ВА. 2. Даны вершины пирамиды A(9;5;5), B(–3;7;1), C(5;7;8), D(6;9;2). Найти: а) угол между ребрами АВ и А D; б) площадь грани АВС; в) проекцию вектора на вектор ; г) объем пирамиды. | Вариант 6 1. Даны вершины треугольника А(2;7;3), В(3;1;8), С(2;–7;4). Найти: а) внутренний угол А, используя скалярное произведение; б) длину высоты, опущенной из вершины В на сторону АС. 2. Даны вершины пирамиды A(0;7; 1), B(4; 1;53), C(4; 6; 3), D(3; 9;8). Найти: а) угол между ребрами АВ и А D; б) площадь грани АВС; в) проекцию вектора на вектор ; г) объем пирамиды. |
Вариант 7 1. Даны вершины треугольника А(1;4;3), В(6;8;5), С(3;1;4). Найти: а) внутренний угол С, используя скалярное произведение; б) длину высоты, опущенной из вершины А на сторону СВ. 2. Даны вершины пирамиды A(5; 5; 4), B(3; 8;43), C(3; 5;109), D(5;8;2). Найти: а) угол между ребрами АВ и А D; б) площадь грани АВС; в) проекцию вектора на вектор ; г) объем пирамиды. | Вариант 8 1. Даны вершины треугольника А(1;7;3), В(3;4;2), С(4;8;5). Найти: а) внутренний угол В, используя скалярное произведение; б) длину высоты, опущенной из вершины С на сторону ВА. 2. Даны вершины пирамиды A(6;1;14), B(4;6;3), C(4;2;0), D(1;2;6). Найти: а) угол между ребрами АВ и А D; б) площадь грани АВС; в) проекцию вектора на вектор ; г) объем пирамиды. |
Вариант 9 1. Даны вершины треугольника А(3;–2;–5), В(4;–1;4), С(1;–2;2). Найти: а) внутренний угол А, используя скалярное произведение; б) длину высоты, опущенной из вершины В на сторону АС. 2. Даны вершины пирамиды A(7;5;3), B(9;4;4), C(4;5;7), D(7;9;6). Найти: а) угол между ребрами АВ и А D; б) площадь грани АВС; в) проекцию вектора на вектор ; г) объем пирамиды. | Вариант 10 1. Даны вершины треугольника А(3;–3;1), В(1;3;–7), С(2;–1;5). Найти: а) внутренний угол С, используя скалярное произведение; б) длину высоты, опущенной из вершины А на сторону СВ. 2. Даны вершины пирамиды A(3;1;4), B(–1;6;1), C(–1;1;6), D(0; 4;–1). Найти: а) угол между ребрами АВ и А D; б) площадь грани АВС; в) проекцию вектора на вектор ; г) объем пирамиды. |
Вариант 11 1. Даны вершины треугольника А(1;–2;3), В(4;7;2), С(6;4;2). Найти: а) внутренний угол В, используя скалярное произведение; б) длину высоты, опущенной из вершины С на сторону ВА. 2. Даны вершины пирамиды A(3;3;9), B(6;9;1), C(1;7;3), D(8;5;8). Найти: а) угол между ребрами АВ и А D; б) площадь грани АВС; в) проекцию вектора на вектор ; г) объем пирамиды. | Вариант 12 1. Даны вершины треугольника А(7;2;1), В(4;3;5), С(3;4;–2). Найти: а) внутренний угол А, используя скалярное произведение; б) длину высоты, опущенной из вершины В на сторону АС. 2. Даны вершины пирамиды A(3;5;4), B(5;8;3), C(1;9;9), D(6;4;8). Найти: а) угол между ребрами АВ и А D; б) площадь грани АВС; в) проекцию вектора на вектор ; г) объем пирамиды. |
Вариант 13 1. Даны вершины треугольника А(1;2;3), В(–1;3;2), С(7;–3;5). Найти: а) внутренний угол С, используя скалярное произведение; б) длину высоты, опущенной из вершины А на сторону СВ. 2. Даны вершины пирамиды A(2;4;3), B(7;6;3), C(4;9;3), D(3;6;7). Найти: а) угол между ребрами АВ и А D; б) площадь грани АВС; в) проекцию вектора на вектор ; г) объем пирамиды. | Вариант 14 1. Даны вершины треугольника А(4;7;8), В(9;1;3), С(2;-4;1). Найти: а) внутренний угол В, используя скалярное произведение; б) длину высоты, опущенной из вершины С на сторону ВА. 2. Даны вершины пирамиды A(9;5;5), B(–3;7;1), C(5;7;8), D(6;9;2). Найти: а) угол между ребрами АВ и А D; б) площадь грани АВС; в) проекцию вектора на вектор ; г) объем пирамиды. |
Вариант 15 1. Даны вершины треугольника А(10;3;1), В(1;4;2), С(3;9;2). Найти: а) внутренний угол А, используя скалярное произведение; б) длину высоты, опущенной из вершины В на сторону АС. 2. Даны вершины пирамиды A(0;7;1), B(4;1;5), C(4;6;3), D(3;9;8). Найти: а) угол между ребрами АВ и А D; б) площадь грани АВС; в) проекцию вектора на вектор ; г) объем пирамиды. | Вариант 16 1. Даны вершины треугольника А(2;4;1), В(1;3;6), С(5;3;1). Найти: а) внутренний угол С, используя скалярное произведение; б) длину высоты, опущенной из вершины А на сторону СВ. 2. Даны вершины пирамиды A(5;5;4), B(3;8;4), C(3;5;10), D(5;8;2). Найти: а) угол между ребрами АВ и А D; б) площадь грани АВС; в) проекцию вектора на вектор ; г) объем пирамиды. |
Вариант 17 1. Даны вершины треугольника А(8;2;3), В(4;6;10), С(3;–2;10). Найти: а) внутренний угол В, используя скалярное произведение; б) длину высоты, опущенной из вершины С на сторону ВА. 2. Даны вершины пирамиды A(6;1;1), B(4;6;6), C(4;2;0), D(1;2;6). Найти: а) угол между ребрами АВ и А D; б) площадь грани АВС; в) проекцию вектора на вектор ; г) объем пирамиды. | Вариант 18 1. Даны вершины треугольника А(2;7;3), В(3;1;8), С(2;–7;4). Найти: а) внутренний угол А, используя скалярное произведение; б) длину высоты, опущенной из вершины В на сторону АС. 2. Даны вершины пирамиды A(7;5;3), B(9;4;4), C(4;5;7), D(7;9;6). Найти: а) угол между ребрами АВ и А D; б) площадь грани АВС; в) проекцию вектора на вектор ; г) объем пирамиды. |
Вариант 19 1. Даны вершины треугольника А(1;4;3), В(6;8;5), С(3;1;4). Найти: а) внутренний угол С, используя скалярное произведение; б) длину высоты, опущенной из вершины А на сторону СВ. 2. Даны вершины пирамиды A(3;–2;–5), B(4;–1;4), C(–1;1;6), D(0;4;–1). Найти: а) угол между ребрами АВ и А D; б) площадь грани АВС; в) проекцию вектора на вектор ; г) объем пирамиды. | Вариант 20 1. Даны вершины треугольника А(1;7;3), В(3;4;2), С(4;8;5). Найти: а) внутренний угол В, используя скалярное произведение; б) длину высоты, опущенной из вершины С на сторону ВА. 2. Даны вершины пирамиды A(3;3;9), B(6;9;1), C(1;7;3), D(8;5;8). Найти: а) угол между ребрами АВ и А D; б) площадь грани АВС; в) проекцию вектора на вектор ; г) объем пирамиды. |
Вариант 21 1. Даны вершины треугольника А(3;–2;–5), В(4;–1;4), С(1;–2;2). Найти: а) внутренний угол А, используя скалярное произведение; б) длину высоты, опущенной из вершины В на сторону АС. 2. Даны вершины пирамиды A(3;5;4), B(5;8;3), C(1;9;9), D(6;4;8). Найти: а) угол между ребрами АВ и А D; б) площадь грани АВС; в) проекцию вектора на вектор ; г) объем пирамиды. | Вариант 22 1. Даны вершины треугольника А(3;–3;1), В(1;3;–7), С(2;–1;5). Найти: а) внутренний угол С, используя скалярное произведение; б) длину высоты, опущенной из вершины А на сторону СВ. 2. Даны вершины пирамиды A(2;4;3), B(7;6;3), C(4;9;3), D(3;6;7). Найти: а) угол между ребрами АВ и А D; б) площадь грани АВС; в) проекцию вектора на вектор ; г) объем пирамиды. |
Вариант 23 1. Даны вершины треугольника А(1;–2;3), В(4;7;2), С(6;4;2). Найти: а) внутренний угол В, используя скалярное произведение; б) длину высоты, опущенной из вершины С на сторону ВА. 2. Даны вершины пирамиды A(9;5;5), B(–3;7;1), C(5;7;8), D(6;9;2). Найти: а) угол между ребрами АВ и А D; б) площадь грани АВС; в) проекцию вектора на вектор ; г) объем пирамиды. | Вариант 24 1. Даны вершины треугольника А(7;2;1), В(4;3;5), С(3;4;–2). Найти: а) внутренний угол А, используя скалярное произведение; б) длину высоты, опущенной из вершины В на сторону АС. 2. Даны вершины пирамиды A(0;7;1), B(4;1;5), C(4;6;3), D(3;6;8). Найти: а) угол между ребрами АВ и А D; б) площадь грани АВС; в) проекцию вектора на вектор ; г) объем пирамиды. |
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Высшая математика в упражнениях и задачах: учеб. пособие / П.Е. Данко, А.Г. Попов, Т.Я. Кожевникова, С.П. Данко. – М.: Оникс, 2008. – 816 с.
2. Зайцев, И.А. Высшая математика: учебник / И.А.Зайцев. – 3-е изд., испр. – М.: Дрофа, 2004. – 400 с.
3. Кудрявцев, В.А. Краткий курс высшей математики: учеб. пособие / В.А. Кудрявцев, Б. П. Демидович. – М.: АСТ, 2008. – 654с.
4. Минорский, К.П. Сборник задач по высшей математике: учеб. пособие / К.П. Минорский. – 15-е изд. – М.: Физматлит, 2008. – 336 с.
5. Письменный, Д.Т. Конспект лекций по высшей математике (в 2 ч.) Ч.1 / Д.Т. Письменный. – 7-е изд. – М.: Айрис-пресс, 2007. – 288 с.
СОДЕРЖАНИЕ
ВВЕДЕНИЕ. 3
Требования к оформлению контрольной работы.. 3
1. ЭЛЕМЕНТЫ ВЕКТОРНОЙ АЛГЕБРЫ.. 4
Классификация векторов. 4
Линейные операции над векторами. 4
Проекция вектора на ось. 5
Линейные операции над векторами в координатной форме. 7
Направляющие косинусы.. 8
2. СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ.. 11
Свойства скалярного произведения. 11
3. ВЕКТОРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ.. 13
Свойства векторного произведения. 14
4. СМЕШАННОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ.. 16
Свойства смешанного произведения. 16
Смешанное произведение в координатной форме. 17
5. КОНТРОЛЬНЫЕ ЗАДАНИЯ.. 20
Вопросы для самопроверки. 20
Задания для самопроверки. 20
Задания для контрольной работы.. 21
БИБЛИОГРАФИЧЕСКИЙ СПИСОК.. 25