Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Собственные и примесные полупроводники. Основные и неосновные носители заряда.




Как и в металлах, электрический ток в полупроводниках связан с дрейфом носителей заряда. Но, если в металлах наличие свободных электронов обусловлено самой природой металлической связи, появление носителей заряда в полупроводниках определяется рядом факторов, важнейшими из которых являются химическая чистота материала и температура. В зависимости от степени чистоты полупроводники подразделяют на собственные и примесные.

Собственный — это такой полупроводник, в котором можно пренебречь влиянием примесей при данной температуре. Согласно зонной теории твердого тела твердого тела для полупроводников характерно наличие не очень широкой (< 3 эВ) запрещенной зоны на энергетической диаграмме. В собственном полупроводнике при температуре абсолютного нуля валентная зона полностью заполнена электронами, а зона проводимости абсолютно свободна. Из-за блокирующего действия запрещенной зоны собственный полупроводник при 0К не обладает электропроводимостью, т.е. ведет, себя подобно идеальному диэлектрику;

При температурах, отличных от абсолютного нуля, имеется конечная вероятность того, что некоторые из электронов за счет тепловых флуктуаций (неравномерного распределения тепловой энергии между частицами) преодолеют потенциальный барьер и окажутся в зоне проводимости. В собственном полупроводнике каждый переход электрона в зону проводимости сопровождается образованием дырки в валентной зоне. Благодаря дыркам электроны валентной зоны также принимают участие в процессе электропроводимости за счет эстафетных переходов под действием электрического поля на более высокие освободившиеся энергетические уровни. Совокупное поведение электронов валентной зоны можно представить как движение дырок, обладающих по­ложительным зарядом и некоторой эффективной массой.

Чем выше температура и меньше ширина запрещенной зоны, тем выше скорость тепловой генерации носителей заряда (электронов и дырок). Одновременно с генерацией в полупроводнике непрерывно идет и обратный процесс – рекомбинация носителей заряда, т. е. возвращение электронов в валентную зону с исчезновением пары носи­телей заряда. В результате протекания двух конкурирующих процес­сов в полупроводнике при любой температуре устанавливается неко­торая равновесная концентрация электронов по и дырок p0. Специ­фика собственного полупроводника состоит в том, что равновесная концентрация электронов ni равна равновесной концентрации дырок р i

(7.1)

(7.2)

Где , ширина запрещенной зоны.

Для графического изображения температурной зависимости ni выражение (7.2) удобно представить в виде:

Произведение является слабой функцией от температуры; поэтому зависимость логарифма концентрации носителей заряда от обратной температуры близка к линейной, причем наклон прямой характеризует ширину запрещенной зоны полупроводника.

Примесный — это такой полупроводник, электрофизические свойства которого в основном определяются примесями.Как правило, примеси создают дополнительные уровни в запрещенной зоне полупроводника. При малой концентрации примесей расстояние между примесными атомами велико, их электронные оболочки не взаимодействуют друг с другом. Вследствие этого примесные энергетические уровни являются дискретными, т. е. не расщепляются в зону, как это имеет место для уровней основных атомов кристаллической решетки.

Если примесные атомы находятся в узлах кристаллической решетки, то их называют примесями замещения, если в междуузлиях — примесями внедрения.

Роль примесей могут играть и всевозможные дефекты структуры. К числу таких дефектов относятся, в первую очередь, вакансии и междуузельные атомы.

Доноры и акцепторы. При малой концентрации примесей вероятность непосредственного перехода электронов от одного примесного атома к другому ничтожно мала. Однако примеси могут либо поставлять электроны в зону проводимости полупроводника, либо принимать их с уровней его валентной зоны. На рис. 7.2 показаны два случая, имеющие наибольшее практическое значение.

1. Примесные уровни, заполненные электронами при отсутствии внешних энергетических воздействий, расположены в запрещенной зоне вблизи нижнего края зоны проводимости. При внешнем возбуждении электроны с примесных уровней могут легко пере­ходить в свободную зону и участвовать в процессе электропроводности. Энергия, необходимая для таких переходов, значительно меньше энергии ионизации собст­венных атомов полупроводника, т. е. ширины запрещенной зоны. Примеси, поставляющие электроны в зону проводимости полупроводника, называют донорами. При относительно невысоких температурах переходы электронов из валентной зоны в зону проводимости не играют существенной роли. В таких материалах концентрация электронов превышает концентрацию дырок, вследствие чего они полу­чили название полупроводников n -типа. Минимальную энергию, кото­рую необходимо сообщить электрону для перевода его с донорного уровня в зону проводимости, называют энергией ионизации донора (рис.7.2,а).

2. В противоположном случае примесь может внести незаполненные уровни, располагающиеся в запрещенной зоне вблизи от верхнего края («потолка») валентной зоны. Благодаря тепловому возбуждению элект­роны из валентной зоны полупроводника забрасываются на эти сво­бодные примесные уровни. Ввиду разобщенности атомов примеси, электроны, заброшенные на примесные уровни, не участвуют в электри­ческом токе. Полупроводник с такой примесью имеет концентрацию дырок большую, чем концентрация электронов, перешедших из ва­лентной зоны в зону проводимости, и его называют полупроводником p -типа, а примеси, захватывающие электроны из валентной зоны полупроводника, — акцепторами.

Минимальную энергию, которую необходимо сообщить электрону валентной зоны, чтобы перевести его на акцепторный уровень, назы­вают энергией ионизации акцептора (рис. 7.2,б).

Примеси замещения, валентность которых превышает валентность основных атомов решетки, проявляют свойства доноров. Кроме мышьяка типичными донорами в кремнии и германии являются фосфор и сурьма.

Примеси замещения, имеющие валентность меньше валентности основных атомов решетки, в ковалентных полупроводниках являются акцепторами. Помимо алюминия акцепторные свойства кремнии и германии проявляют бор, галлий, индий. Энергия ионизации акцепторов численно близка к энергии ионизации доноров.

Основные и неосновные носители заряда. Носители заряда, концентрация которых в данном полупроводнике больше, называют основными, аносители концентрация которых меньше— неосновными. Так, в полу­проводнике n -типа электроны явля­ются основными носителями, а дыр­ки — неосновными; в полупроводни­ке p -типа дырки — основными носителями, а электроны—неосновными. При изменении концентрации примесей в полупроводнике изменяется положение уровня Ферми и концентрация носителей заряда обоих знаков, т. е. электронов и дырок. Однако произведение концентраций электронов и дырок в невырожденном полупроводнике при заданной температуре в условиях термодинамического равновесия есть величина постоянная, не зависящая от содержания примесей.

Если, например, в полупроводнике n -типа увеличить концентрацию доноров, то возрастет число электронов, переходящих в единицу времени с примесных уровней в зону проводимости. Соответственно возрастет скорость рекомбинации носителей заряда и уменьшится равновесная концентрация дырок.

Выражение


часто называют соотношением «действующих масс» для носителей заряда. С его помощью всегда можно найти концентрацию неосновных носителей заряда, если известна концентрация основных.

 





Поделиться с друзьями:


Дата добавления: 2017-03-12; Мы поможем в написании ваших работ!; просмотров: 3680 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинать всегда стоит с того, что сеет сомнения. © Борис Стругацкий
==> читать все изречения...

2322 - | 2075 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.