ЛЕКЦИЯ 10
ЭЛЕКТРОТЕХНИЧЕСКИЕ МАТЕРИАЛЫ. КЛАССИФИКАЦИЯ
Электротехническими материалами (например, контактными материалами) называют материалы, характеризуемые определенными свойствами по отношению к электрическим и магнитным полям и применяемые в технике с учетом и благодаря этим свойствам. В настоящее время число наименований электротехнических материалов, применяемых в радио-, микро-, и наноэлектронике составляет несколько тысяч. Причем все более актуальным является задача создания новых материалов с заданными свойствами (оптическими, полупроводниковыми, эмиссионными и т. д.)
Основными областями использования электротехнических материалов является электроэнергетика, электротехника, радиоэлектроника.
Электроэнергетика – это производство энергии и ее поставка потребителю. Это линии электропередач, трансформаторные станции, энергетическое хозяйство.
Электротехника – это все, что связано с превращением электрической энергии в другие виды энергии с одновременно осуществлением технологических процессов:
электротермических, - электросварочных,- электрофизических,- электрохимических и др.
Радиотехника – это системы управления энергетическими и электро-техническими объектами, передача информации, ее обработка, хранение и т. д.
Совершенствование электротехнологии повлекло за собой создание материалов, обладающих новыми свойствами: более высокой прочностью, термостойкостью, устойчивостью к агрессивному воздействию химических реакций, и имеющих высокие электроизоляционные свойства и низкую теплопроводность.
Классификация электротехнических материалов
Материалы, используемые в электронной технике, подразделяют на электротехнические, конструкционные и специального назначения.
По поведению в магнитном поле электротехнические материалы подразделяют на сильномагнитные (магнетики) и слабомагнитные. Первые нашли особенно широкое применение в технике благодаря их магнитным свойствам.
По поведению в электрическом поле материалы подразделяют на проводниковые, полупроводниковые и диэлектрические.
Большинство электротехнических материалов можно отнести к слабомагнитным и практически немагнитным. Однако и среди магнетиков следует различать проводящие, полупроводящие и практически непроводящие, что определяет частотный диапазон их применения.
Проводниковые называют материалы, основным электрическим свойствам которых является сильно выраженная электропроводность. Их применение в технике обусловлено в основном этим свойством, определяющим высокую удельную электрическую проводимость при нормальной температуре.
Полупроводниковыми называют материалы, являющиеся по удельной проводимости промежуточными между проводниковыми и диэлектрическими материалами и отличительным свойством которых является сильная зависимость удельной проводимости от концентрации и вида примесей или различных дефектов, а также в большинстве случаев от внешних энергетических воздействий (температуры, освещенности и т. п.).
Диэлектрическими называют материалы, основным электрическим свойством которых является способность к поляризации и в которых возможно существование электростатического поля. Реальный (технический) диэлектрик тем более приближается к идеальному, чем меньше его удельная проводимость и чем слабее у него выражены замедленные механизмы поляризации, связанные с рассеиванием электрической энергии и выделением теплоты.
При применении диэлектриков — одного из наиболее обширных классов электротехнических материалов — довольно четко определилась необходимость использования как пассивных, так и активных свойств этих материалов.
Пассивные свойства диэлектрических материалов используются, когда их применяют в качестве электроизоляционных материалов и диэлектриков конденсаторов обычных типов. Электроизоляционными материалами являются диэлектрики, которые не допускают утечки электрических зарядов, т. е. с их помощью отделяют электрические цепи друг от друга или токоведущие части устройств, приборов и аппаратов от проводящих, но не токоведущих частей (от корпуса, от земли). В этих случаях диэлектрическая проницаемость материала не играет особой роли или она должна быть возможно меньшей, чтобы не вносить в схемы паразитных емкостей. Если материалы используется в качестве диэлектрика конденсатора определенной емкости и наименьших размеров, то при прочих равных условиях желательно, чтобы этот материал имел большую диэлектрическую проницаемость.
Активными (управляемыми) диэлектриками являются сегнетоэлектрики, пьезоэлектрики, пироэлектрики, электролюминофоры, материалы для излучателей и затворов в лазерной технике, электреты и др.
Условно к проводникам относят материалы с удельным электрическим сопротивлением ρ < 10-5 Ом*м, а к диэлектрикам материалы, у которых ρ > 108 Ом*м. При этом надо заметить, что удельное сопротивление хороших проводников может составлять всего 10-8 Ом м, а лучших диэлектриков превосходить 1016 Ом-м. Удельное сопротивление полупроводников в зависимости от строения и состава материалов, а также от условий их эксплуатации может изменяться в пределах
10-5—108 Ом м. Хорошими проводниками электрического тока являются металлы. Из 105 химических элементов лишь двадцать пять являются неметаллами, причем двенадцать элементов могут проявлять полупроводниковые свойства. Но кроме элементарных веществ существуют тысячи химических соединений, сплавов или композиций со свойствами проводников, полупроводников или диэлектриков. Четкую границу между значениями удельного сопротивления различных классов материалов провести достаточно сложно. Например, многие полупроводники при низких температурах ведут себя подобно диэлектрикам. В то же время диэлектрики при сильном нагревании могут проявлять свойства полупроводников. Качественное различие состоит в том, что для металлов проводящее состояние является основным, а для полупроводников и диэлектриков – возбужденным.
Развитие радиотехники потребовало создания материалов, в которых специфические высокочастотные свойства сочетаются с необходимыми физико-механическими параметрами. Такие материалы называют высокочастотными.
Магнитные материалы