Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Для перевода восьмеричного числа в двоичное необходимо каждую цифру заменить эквивалентной ей двоичной триадой.




Пример. Число перевести в двоичную систему счисления.

Для перевода шестнадцатеричного числа в двоичное необходимо каждую цифру заменить эквивалентной ей двоичной тетрадой.

Пример. Число перевести в двоичную систему счисления.

При переходе из восьмеричной системы счисления в шестнадцатеричную и обратно, необходим промежуточный перевод чисел в двоичную систему.

Пример 1. Число перевести в восьмеричную систему счисления.

Пример 2. Число перевести в шестнадцатеричную систему счисления.

Перевод дробной части

При переводе дробной части, в отличие от перевода целой части - нужно не делить, а умножать на основание той системы счисления, в которую мы переводим. При этом каждый раз отбрасываются целые части, а дробные части - снова умножаются. Собрав целые части в том порядке, как они были получены - получается дробная часть числа в нужной системе счисления.

Одна операция умножения даёт ровно один дополнительный знак в системе счисления, в которую осуществляется перевод.

При этом существует два условия завершения процесса:

1) в результате очередного умножения Вы получили ноль в дробной части. Понятно, что дальше этот ноль сколько ни умножай - он всё равно останется нулём. Это означает, что число перевелось из десятичной системы счисления в нужную точно.

2) не все числа возможно перевести точно. В таком случае обычно переводят с некоторой точностью. При этом сначала определяют, сколько знаков после запятой будет нужно - именно такое количество раз и нужно будет выполнить операцию умножения.

Вот пример перевода числа 0.3910 в двоичную систему счисления. Точность - 8 разрядов (в данном случае точность перевода выбрана произвольно):

Если выписать целые части в прямом порядке, то получим 0.3910=0.011000112.

Самый первый ноль (на рисунке перечёркнут синим) выписывать не нужно - так как он относится не к дробной части, а к целой. Некоторые по ошибке записывают этот ноль после запятой, когда выписывают результат.

Вот так будет выглядеть перевод числа 0.3910 в шестнадцатеричную систему счисления. Точность - 8 разрядов в данном случае точность снова выбрана произвольно:

Если выписать целые части в прямом порядке, то получим 0.3910=0.63D700A316.

При этом Вы, наверное, заметили, что целые части при умножении получаются в десятичной системе счисления. Эти целые части, полученные при переводе дробной части числа следует интерпретировать точно так же, как и остатки при переводе целой части числа. То есть, если при переводе в шестнадцатеричную систему счисления целые части получились в таком порядке: 3, 13, 7, 10, то соответствующее число будет равно 0.3D7A16.

 

 

Контрольные вопросы:

1. Что такое система счисления?

2. Чем отличается позиционная от непозиционной системы счисления?

3. Приведите пример позиционной системы счисления.

4. Что такое основание позиционной системы счисления?

5. Какие системы счисления используются в ЭВМ?





Поделиться с друзьями:


Дата добавления: 2017-04-15; Мы поможем в написании ваших работ!; просмотров: 434 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент может не знать в двух случаях: не знал, или забыл. © Неизвестно
==> читать все изречения...

2754 - | 2314 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.