Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Высшие гармоники в трехфазных цепях

Измерение действующих значений несинусоидальных токов и на­пряжений

 

Для измерения действующих значений токов и напряжений в цепях пере­менного си­нусоидального тока применяются различные приборы, отличаю­щиеся по принципу их дей­ствия или системой. Независимо от устройства шкалы всех приборов для измерения дейст­вующих значений токов и напряже­ний проградуированы в действующих значениях измеряе­мых величин.

Приборы непосредственного измерения (к таким относятся приборы элек­тромагнит­ной и электродинамической систем) реагирует на действующее зна­чение измерянной вели­чины (I, U) и, следовательно, для их шкал коэффициент пересчета равен единице (кn =1).

Приборы косвенного измерения могут реагировать на среднее (Iср, Uср) или на мак­си­мальное (Imax, Umax) значение измеряемой величины, но их показа­ния пересчитываются к действующим значениям синусоидальных функций.

Для приборов, реагирующих на среднее значение, коэффициент пере­счета равен:

Для приборов, реагирующих на максимальное значение, коэффициент пе­ресчета ра­вен:

Действующее значение несинусоидальной функции зависит только от ам­плитуд от­дельных гармоник, в то же время ее максимальное и среднее значения зависят как от ампли­туд гармоник, так и от их фазовых сдвигов. Из этого сле­дует вывод, что показания приборов косвенного измерения, реагирующих на максимальное или среднее значение, в цепях несину­соидального тока не будут соответствовать действующим значениям измеряемых величин.

Рассмотрим два примера. Пусть измеряемое напряжение содержит 1-ю и 3-ю гармо­ники, но с разными фазовыми сдвигами между ними:

a) , (рис. 124а),

б) , (рис. 124б).

Действующие (U), максимальные (Umax) и средние (Uср) значения этих напряжений, рассчитанные математически по соответствующим формулам, а также показания приборов различных систем (V 1 – непосредственного измере­ния, V 2 - косвенного измерения с реакцией на максимальное значение Umax и V 3 - косвенного измерения с реакцией на среднее значение Uср) приведены ниже в таблице.

 

 


Схема U, B Umax, B U cp,B V 1 V 2 V 3
а) 71,1   65,8 71,1 63.6 73,0
б) 71,1   61,6 71,1 77,8 68,4

 

Как видно из приведенных в таблице цифр, показания приборов косвен­ного измерения существенно зависят от фазового сдвига между гармониками, при этом методическая по­грешность измерения может составлять значительную величину (в рассматриваемом примере около 10 %).

Высшие гармоники в трехфазных цепях

 

В симметричном трехфазном режиме токи и напряжения в фазах сдви­нуты взаимно во времени на D t = T /3 в порядке следования фаз А ® В ® С ® А, что в градусной мере со­ставляет: для 1 гармоники D wt = = 120°, для 2 гармоники D2 wt = 2× = 240= -120°, для 3 гармоники D3 wt = 3× = 360° = 0, и т. д.

Из этого следует, что в симметричной трехфазной системе гармоники с порядко­вым номером к = 3 n -2 (n = 1, 2, 3…), т.е. 1-я, 4-я, 7-я и т.д., имеют пря­мой порядок следова­ния фаз А ® В ® С ® А и, следовательно, образуют сим­метричные системы прямой после­дова­тель­ности. Гармоники с порядковым но­мером к = 3 n +1 (2-я, 5-я, 8-я и т.д.) имеют обрат­ный по­рядок следования фаз А ® С ® В ® А и, следовательно, образуют симметричные сис­темы обратной последовательности. Гармоники с порядковым номером к =3 n (3-я, 6-я, 9-я и т.д.) имеют нулевой порядок следования фаз, т.е. совпадают, и, следовательно, образуют симмет­ричные системы нулевой последовательности.

Пусть обмотки трехфазного генератора соединены по схеме звезды с выводом ну­левой точки, а его фазные напряжения (ЭДС) содержат все возмож­ные гармоники (рис. 125).

 
 
UA     UB UC


 

 

B функциях фазных напряжений будут содержаться все гармоники с соот­ветствую­щими их номеру сдвигами фаз:

uA (t) = U 1 m sin wt +U 2 m sin2 wt + U 3 m sin3 wt + …

uB (t) = U 1 m sin(wt - 120°) +U 2 m sin(2 wt + 120°) + U 3 m sin3 wt + …

uC (t) = U 1 m sin(wt +120°) + U 2 m sin(2 wt - 120°) + U 3 m sin3 wt + …

Векторные диаграммы напряжений для 1-й, 2-й и 3-й гармоник пока­заны на рис. 126а, б, в.

 

 

 

 


 

Линейные напряжения равны разности соответствующих двух фазных на­пряжений, например uAB = uA - uB. Как следует из векторных диаграмм рис. 9 амплитуды линейных на­пряжений для гармоник прямой и обратной последова­тельностей в раз больше их фазных значений, а гармоники нулевой последо­вательности (кратные трем) в линейных напряжениях вообще отсутствуют (равны нулю):

 

uAB (t) =

uBC (t) =

uCA (t) =

Действующие значения фазного и линейного напряжения:

 

;

 

Сравнение полученных уравнений показывает, что при наличии в фазных напряже­ниях генератора гармоник нулевой последовательности (кратных трем) стандартное соотно­шение не соблюдается, а именно . Из совместного решения этих урав­нений получим: - действующее значение всех гармоник нулевой последовательности. В реальных трехфазных цепях четные гармо­ники, как правило, отсутствуют вообще, а амплитуда 9-й гармоники не­значительна, поэтому можно приближенно считать, что U 0 » U 3 , и U 3 m » U 0 - амплитуда 3-й гармоники.

Если обмотки трехфазного генератора соединить по схеме треуголь­ника, то гармо­ники прямой и обратной последовательностей в контуре тре­угольника складываясь, в сумме дают нуль, а гармоники нулевой последова­тельности складываются арифметически, и в кон­туре треугольника будет дейст­вовать суммарная ЭДС, равная 3 U0. Даже при незначительных амплитудах гар­моник нулевой последовательности в фазных ЭДС, вызываемые ими в кон­туре треугольника токи могут оказаться значительными по величине, так как внут­реннее сопротивление обмоток очень мало. Это привело бы к до­полнительным потерям энергии в генераторе и снижению его КПД. По этой причине обмотки трехфазных генераторов запрещается соединять по схеме треугольника.

Расчет трехфазной цепи при несинусоидальном напряжении генератора произво­дится так же, как и любой сложной цепи, а именно, по методу наложе­ния в три этапа. На 1-ом этапе выполняется разложение несинусоидального фазного напряжения в гармонический ряд Фурье. На 2-ом этапе выполняется расчет схемы для каждой гармоники в отдельности, при этом учитывается зави­симость порядка следования фаз от номера гармоники. Например, гар­моники токов нулевой последовательности могут замкнуться только через нулевой про­вод, поэтому при отсутствии нулевого провода гармоники кратные трем в фаз­ных и линейных токах равны нулю.

На заключительном этапе расчета определяются действующие значе­ния токов, на­пряжений, активные мощности.

В случае симметричной трехфазной нагрузки расчет токов и напряже­ний для каж­дой гармоники можно выполнять только в одной фазе А, а соответ­ствующие токи и напряже­ния в других фазах определять через поворотные множители “ а ”, “ а 2 ” с учетом порядка следования фаз.

Пример. Задана схема цепи (рис. 127) и комплексные сопротивления фаз на основной частоте ( Ом, Ом, Ом. Фазные напряжения генератора несинусоидальны, гармо­нический состав задан:

uA = 200sin wt + 50sin3 wt + 20sin5 wt

Требуется определить: 1) действующие значения фазных и линейных на­пряжений генератора, 2) действующие значения линейных (фазных) токов при­емника и тока в нулевом проводе, 3) активные мощности генератора и прием­ника.

 

 
 

 


Расчет схемы для 1-й гармоники (прямая последовательность):

 

Расчет схемы для 3-й гармоники (нулевая последовательность):

Расчет схемы для 5-й гармоники (обратная последовательность):

Синтез решения.

Действующие значения фазного и линейного напряжений:

В

В

B, что меньше .

Действующие значения токов:

A

A

A

A

Так как при наличии нулевого провода отдельные фазы приемника рабо­тают незави­симо друг от друга, то активные мощности отдельных фаз прием­ника равны активным мощ­ностям одноименных фаз генератора.

PA = I 2 A×RA = 0.9762×150 = 142.9 Вт

PB = I 2 B×R B = 1.1082×120 = 147.3 Вт

PC = I 2 C×RC = 0.8652×100 = 74.8 Вт

P = PA + PB + PC = 365 Вт

 

 



<== предыдущая лекция | следующая лекция ==>
Клапана последовательности | Лекция 4. Понятие конституционного контроля и надзора
Поделиться с друзьями:


Дата добавления: 2017-04-15; Мы поможем в написании ваших работ!; просмотров: 861 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Победа - это еще не все, все - это постоянное желание побеждать. © Винс Ломбарди
==> читать все изречения...

2239 - | 2072 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.