Измерение действующих значений несинусоидальных токов и напряжений
Для измерения действующих значений токов и напряжений в цепях переменного синусоидального тока применяются различные приборы, отличающиеся по принципу их действия или системой. Независимо от устройства шкалы всех приборов для измерения действующих значений токов и напряжений проградуированы в действующих значениях измеряемых величин.
Приборы непосредственного измерения (к таким относятся приборы электромагнитной и электродинамической систем) реагирует на действующее значение измерянной величины (I, U) и, следовательно, для их шкал коэффициент пересчета равен единице (кn =1).
Приборы косвенного измерения могут реагировать на среднее (Iср, Uср) или на максимальное (Imax, Umax) значение измеряемой величины, но их показания пересчитываются к действующим значениям синусоидальных функций.
Для приборов, реагирующих на среднее значение, коэффициент пересчета равен:
Для приборов, реагирующих на максимальное значение, коэффициент пересчета равен:
Действующее значение несинусоидальной функции зависит только от амплитуд отдельных гармоник, в то же время ее максимальное и среднее значения зависят как от амплитуд гармоник, так и от их фазовых сдвигов. Из этого следует вывод, что показания приборов косвенного измерения, реагирующих на максимальное или среднее значение, в цепях несинусоидального тока не будут соответствовать действующим значениям измеряемых величин.
Рассмотрим два примера. Пусть измеряемое напряжение содержит 1-ю и 3-ю гармоники, но с разными фазовыми сдвигами между ними:
a) , (рис. 124а),
б) , (рис. 124б).
Действующие (U), максимальные (Umax) и средние (Uср) значения этих напряжений, рассчитанные математически по соответствующим формулам, а также показания приборов различных систем (V 1 – непосредственного измерения, V 2 - косвенного измерения с реакцией на максимальное значение Umax и V 3 - косвенного измерения с реакцией на среднее значение Uср) приведены ниже в таблице.
Схема | U, B | Umax, B | U cp,B | V 1 | V 2 | V 3 |
а) | 71,1 | 65,8 | 71,1 | 63.6 | 73,0 | |
б) | 71,1 | 61,6 | 71,1 | 77,8 | 68,4 |
Как видно из приведенных в таблице цифр, показания приборов косвенного измерения существенно зависят от фазового сдвига между гармониками, при этом методическая погрешность измерения может составлять значительную величину (в рассматриваемом примере около 10 %).
Высшие гармоники в трехфазных цепях
В симметричном трехфазном режиме токи и напряжения в фазах сдвинуты взаимно во времени на D t = T /3 в порядке следования фаз А ® В ® С ® А, что в градусной мере составляет: для 1 гармоники D wt = = 120°, для 2 гармоники D2 wt = 2× = 240= -120°, для 3 гармоники D3 wt = 3× = 360° = 0, и т. д.
Из этого следует, что в симметричной трехфазной системе гармоники с порядковым номером к = 3 n -2 (n = 1, 2, 3…), т.е. 1-я, 4-я, 7-я и т.д., имеют прямой порядок следования фаз А ® В ® С ® А и, следовательно, образуют симметричные системы прямой последовательности. Гармоники с порядковым номером к = 3 n +1 (2-я, 5-я, 8-я и т.д.) имеют обратный порядок следования фаз А ® С ® В ® А и, следовательно, образуют симметричные системы обратной последовательности. Гармоники с порядковым номером к =3 n (3-я, 6-я, 9-я и т.д.) имеют нулевой порядок следования фаз, т.е. совпадают, и, следовательно, образуют симметричные системы нулевой последовательности.
Пусть обмотки трехфазного генератора соединены по схеме звезды с выводом нулевой точки, а его фазные напряжения (ЭДС) содержат все возможные гармоники (рис. 125).
|
B функциях фазных напряжений будут содержаться все гармоники с соответствующими их номеру сдвигами фаз:
uA (t) = U 1 m sin wt +U 2 m sin2 wt + U 3 m sin3 wt + …
uB (t) = U 1 m sin(wt - 120°) +U 2 m sin(2 wt + 120°) + U 3 m sin3 wt + …
uC (t) = U 1 m sin(wt +120°) + U 2 m sin(2 wt - 120°) + U 3 m sin3 wt + …
Векторные диаграммы напряжений для 1-й, 2-й и 3-й гармоник показаны на рис. 126а, б, в.
Линейные напряжения равны разности соответствующих двух фазных напряжений, например uAB = uA - uB. Как следует из векторных диаграмм рис. 9 амплитуды линейных напряжений для гармоник прямой и обратной последовательностей в раз больше их фазных значений, а гармоники нулевой последовательности (кратные трем) в линейных напряжениях вообще отсутствуют (равны нулю):
uAB (t) =
uBC (t) =
uCA (t) =
Действующие значения фазного и линейного напряжения:
;
Сравнение полученных уравнений показывает, что при наличии в фазных напряжениях генератора гармоник нулевой последовательности (кратных трем) стандартное соотношение не соблюдается, а именно . Из совместного решения этих уравнений получим: - действующее значение всех гармоник нулевой последовательности. В реальных трехфазных цепях четные гармоники, как правило, отсутствуют вообще, а амплитуда 9-й гармоники незначительна, поэтому можно приближенно считать, что U 0 » U 3 , и U 3 m » U 0 - амплитуда 3-й гармоники.
Если обмотки трехфазного генератора соединить по схеме треугольника, то гармоники прямой и обратной последовательностей в контуре треугольника складываясь, в сумме дают нуль, а гармоники нулевой последовательности складываются арифметически, и в контуре треугольника будет действовать суммарная ЭДС, равная 3 U0. Даже при незначительных амплитудах гармоник нулевой последовательности в фазных ЭДС, вызываемые ими в контуре треугольника токи могут оказаться значительными по величине, так как внутреннее сопротивление обмоток очень мало. Это привело бы к дополнительным потерям энергии в генераторе и снижению его КПД. По этой причине обмотки трехфазных генераторов запрещается соединять по схеме треугольника.
Расчет трехфазной цепи при несинусоидальном напряжении генератора производится так же, как и любой сложной цепи, а именно, по методу наложения в три этапа. На 1-ом этапе выполняется разложение несинусоидального фазного напряжения в гармонический ряд Фурье. На 2-ом этапе выполняется расчет схемы для каждой гармоники в отдельности, при этом учитывается зависимость порядка следования фаз от номера гармоники. Например, гармоники токов нулевой последовательности могут замкнуться только через нулевой провод, поэтому при отсутствии нулевого провода гармоники кратные трем в фазных и линейных токах равны нулю.
На заключительном этапе расчета определяются действующие значения токов, напряжений, активные мощности.
В случае симметричной трехфазной нагрузки расчет токов и напряжений для каждой гармоники можно выполнять только в одной фазе А, а соответствующие токи и напряжения в других фазах определять через поворотные множители “ а ”, “ а 2 ” с учетом порядка следования фаз.
Пример. Задана схема цепи (рис. 127) и комплексные сопротивления фаз на основной частоте ( Ом, Ом, Ом. Фазные напряжения генератора несинусоидальны, гармонический состав задан:
uA = 200sin wt + 50sin3 wt + 20sin5 wt
Требуется определить: 1) действующие значения фазных и линейных напряжений генератора, 2) действующие значения линейных (фазных) токов приемника и тока в нулевом проводе, 3) активные мощности генератора и приемника.
Расчет схемы для 1-й гармоники (прямая последовательность):
Расчет схемы для 3-й гармоники (нулевая последовательность):
Расчет схемы для 5-й гармоники (обратная последовательность):
Синтез решения.
Действующие значения фазного и линейного напряжений:
В
В
B, что меньше .
Действующие значения токов:
A
A
A
A
Так как при наличии нулевого провода отдельные фазы приемника работают независимо друг от друга, то активные мощности отдельных фаз приемника равны активным мощностям одноименных фаз генератора.
PA = I 2 A×RA = 0.9762×150 = 142.9 Вт
PB = I 2 B×R B = 1.1082×120 = 147.3 Вт
PC = I 2 C×RC = 0.8652×100 = 74.8 Вт
P = PA + PB + PC = 365 Вт