Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Специальные методы световой микроскопии




Темнопольная микроскопия (микроскопия в темном поле) основана на использовании специального конденсора, обеспечивающего освещение препарата косыми лучами, не попадающими в объектив. В отсутствие объектов поле зрения представляется темным. При их наличии часть света отражается ими в объектив, в результате чего их изображение обнаруживается в окуляре. Метод позволяет выявить структуры, размеры которых лежат за пределами разрешения светового микроскопа. Он может использоваться для изучения живых клеток.

Фазово-контрастная микроскопия основана на неодинаковом изменении фазы световых лучей при их прохождении через различные структуры изучаемого объекта. Фазово-контрастный микроскоп преобразует незаметные для человеческого глаза фазовые различия в амплитудные. Этот метод дает возможность непосредственного изучения живых клеток без их фиксации и окрашивания.

Поляризационная микроскопия используется для изучения структур, обладающих свойствами анизотропии или двойного лучепреломления. В поляризационном микроскопе на объект направляется поляризованный пучок света, который в дальнейшем пропускается через анализатор (расположенный между объективом и окуляром) – устройство, определяющее отклонения плоскости поляризации света вследствие его прохождения через объект. Тем самым выявляется закономерное пространственное расположение молекул в объекте.

Ультрафиолетовая микроскопия связана с освещением изучаемого объекта ультрафиолетовыми лучами, которые избирательно поглощаются его структурными компонентами. Благодаря тому, что ультрафиолетовые лучи имеют более короткую длину волны по сравнению с лучами видимой части спектра, разрешающая способность микроскопа повышается примерно вдвое. Невидимое изображение в ультрафиолетовом микроскопе преобразуется в видимое с помощью люминесцентного экрана или других устройств.

Флюоресцентная (люминесцентная) микроскопия использует способность некоторых веществ излучать видимый свет при освещении объекта ультрафиолетовыми лучами (аутофлюоресценция). В некоторых случаях (например, при выявлении катехоламинов методом Фалька) флюоресценция возникает после предварительной химической обработки ткани. Применяют также флуоресцентные красители (флюорохромы), связывающиеся с различными структурами или веществами в клетках и межклеточном веществе. Так, акридиновый оранжевый, связываясь с ДНК, дает свечение желто-зеленого цвета, а с РНК – красно-оранжевого. Флюоресцентные красители связывают (конъюгируют) со специфическими антителами для выявления соответствующих антигенов в тканях иммуно-гистохимическими методами.

 

Электронная микроскопия

В настоящее время в научных исследованиях и клинической диагностике широкое применение нашли два метода электронной микроскопии – трансмиссионная (просвечивающая) электронная микроскопия и сканирующая (растровая) электронная микроскопия, использующие соответствующие микроскопы – ТЭМ (ПЭМ) и СЭМ (РЭМ).

Трансмиссионная (просвечивающая) электронная микроскопия основана на использовании пучка электронов, излучаемого электронной пушкой внутри колонны микроскопа в условиях высокого ускоряющего напряжения (40–100 кВ) и глубокого вакуума (10-4 мм рт. ст.). Фокусировка пучка осуществляется электромагнитными линзами, играющими роль конденсора, объектива и проектора. После прохождения через изучаемый объект, помещенный в колонну и обладающий в различных своих участках неравномерной электронной плотностью, пучок электронов направляется на флюоресцирующий экран и создает плоскостное изображение объекта, которое фотографируется на пластинку или пленку (рис. 76).


ТЭМ дает возможность изучения объектов, размеры которых лежат как в пределах разрешения светового микроскопа, так и далеко за ними (вплоть до уровня макромолекул). Его разрешение теоретически достигает 0,002 нм, однако практически составляет 0,2–0,5 нм, а для большинства биологических объектов – 1–2 нм. Увеличение ТЭМ равно 100–1500 тыс. раз.

Высоковольтный ТЭМ (с ускоряющим напряжением до 1000 кВ) обеспечивает более высокую скорость движения электронов, которые глубже проникают в объект. Этот микроскоп дает очень высокое разрешение и позволяет использовать более толстые срезы (до нескольких микро-метров).

 





Поделиться с друзьями:


Дата добавления: 2017-04-15; Мы поможем в написании ваших работ!; просмотров: 1540 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Ваше время ограничено, не тратьте его, живя чужой жизнью © Стив Джобс
==> читать все изречения...

3461 - | 3414 -


© 2015-2026 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.