Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Тепловое излучение и защита от него

Лабораторная работа №7

Оценка эффективности экранов для защиты от теплового излучения

 

Цель работы

Определение интенсивности теплового облучения на рабочем месте и оценка эффективности защитных экранов.

 

Содержание работы

1. Измерить интенсивность теплового облучения на разных расстояниях от источника излучения:

а) при отсутствии защитных экранов;

б) при наличии защитного теплопоглощающего экрана - цепной завесы;

в) при наличии защитного теплоотводящего экрана - водяной завесы.

2. Измерить температуру источника излучения.

3. Рассчитать интенсивность теплового облучения в точках измерения при отсутствии защитных экранов и при наличии водяной завесы.

4. Рассчитать длину волны с максимальной энергией теплового излучения.

5. Рассчитать коэффициенты эффективности защитных экранов.

 

Тепловое излучение и защита от него

Процессы теплопередачи имеют широкое распространение в тепловой и атомной энергетике, ракетно-космической технике, металлургии, химической технологии, светотехнике, гелиотехнике и др.

Перенос теплоты от нагретых тел в окружающем пространстве осуществляется по законам теплопроводности, конвективного теплообмена и теплообмена излучением.

В отличие теплопроводности и конвекции, где плотность теплового потока зависит от температуры в первой степени, перенос энергии излучением определяется четвертой степенью абсолютной температуры. Вследствие этого при высоких температурах основным видом переноса теплоты является излучение.

При температурах 500°С около 60-90% всей теплоты, выделяемой производственным оборудованием и материалами, распространяется в окружающем пространстве путем излучения. При этом энергия излученияпроходит воздушную среду практически без потерь, снова превращаясь в тепловую энергию облучаемых тел.

Основополагающие законы теплового излучения были установлены физиками в конце 19 века и носят их имена.

Закон Стефана-Больцмана выражает зависимость плотности теплового излучения абсолютно черного тела от абсолютной температуры в четвертой степени

С = s Т4 = Со (Т/100) 4, (1)

где s, Со - постоянная и коэффициент излучения абсолютно черного тела (Со = 108 s = 5,67 [ Вт/м2К4]). На практике приходится иметь дело с серыми телами, для них закон Стефана-Больцмана имеет вид:

Еi = ei e = С (Т/100)4, (2)

где ei=Ei/ e - степень черноты i-го тела (0 < e < 1),

С - коэффициент излучения серого тела [Вт/м2К4].

3акон Планка устанавливает связь спектральной плотности теплового излучения абсолютно черного тела Iol [Вт/м2], с длиной волны излучения [м] и абсолютной температурой тела:

Iol = C1 l-5/ [ ехр (С2 /lТ) - 1]. (3)

В этом выражении: C1=3,74×10-18 [Вт/м2] и С2=1,44×10 [м×К] - постоянные излучения.

Графически закон Планка представлен на рис.1.

В.Вин в 1893 году установил, что произведение абсолютной температуры тела на длину вечны максимальной энергии теплового излучения есть величина постоянная:

ТlMAX= 2,898 [м×К]. (4)

Это выражение получило название закона смещения Вина: с ростом температуры максимум спектральной плот-ности потока излучения смещается в коротковолновую область.

Расчет теплообмена излучением между двумя телами является сложной задачей. В общем случае поток энергии между телами определяется температурами тел, их формами, размерами и состоянием поверхностей, взаимным расположением в пространстве и расстоянием между ними. Аналитически эту зависимость можно представить в виде:

Q1,2 = eпр С S1[(T1 /100) 4 - (Т2 /100) 4 ] j1,2, (5)

где eпр =[ l/e1+ (S1/S2) (1/e2 -1)] - приведенная степень черноты двух тел;

S1, S2 - площади поверхностей теплоизлучающего и теплопринимающего тел [м2];

j1,2 = Q2/Q1 - коэффициент облученности, показывающий какая доля энергии излучения первого тела (Q1) попадает на второе тело (Q2). Коэффициент облученности можно рассчитать по законам геометрической оптики или взять из справочной литературы.

При длительном пребывании человека в зоне лучистого потока теплоты происходит нарушение теплового баланса в его организме, что может вызвать заболевание, называемое тепловой гипотермией (перегревом). В нормальных условиях в организме человека поддерживаются стабильные и постоянные условия для функционирования биологических клеток. Это явление называется гомеостазом. Одним из механизмов гомеостаза является система поддержания постоянства внутренней температуры тела человека. Если гомеостатическая система поддержания постоянства температуры организма не справляется с рассеянием избыточного поступающего тепла наступает гипотермия. При этом нарушаются и другие защитные гомеостатические функции организма. Поэтому это заболевание характеризуется не только повышением температуры тела, но и обильным потоотделением, значительным учащением пульса и дыхания, резкой слабостью, головокружением, изменением зрительных ощущений, шумом в ушах и, зачастую, потерей сознания.

Гомеостатические системы поддержания стабильности жизнедеятельности организма связаны между собой и помогают друг другу преодолевать отрицательные внешние воздействия иногда заменяя вышедшие из строя. Поэтому даже при уровнях теплового излучения, не вызывающих гипотермию наблюдается ослабление внимания, замедление реакций, ухудшение координации движений, что в свою очередь приводит к снижению производительности труда.

Тепловой эффект воздействия облучения зависит от многих факторов. Интенсивность облучения менее 700 Вт/м не вызывает у человека неприятного ощущения, если действует несколько минут; свыше 3500 Вт/м - уже через 2 с вызывает жжение, а через 5 с возможен тепловой удар. Производственные источники по характеру спектрального излученияусловно можно разделить на четыре группы:

1) с температурой излучающей поверхности до 500 °С (паропроводы, сушильные установки, низкотемпературные аппараты, наружная поверхность различных печей и др.); их спектр содержит длинные инфракрасные лучи (длина волны 3,7 - 9, 3 мкм);

2) с температурой поверхности от 500 до 1300 °С (открытое пламя, открытые проемы нагревательных печей и топок, нагретый металл - слитки, заготовки, расплавленные чугун и бронза и др.); их спектр содержит преимущественно инфракрасные лучи (1,9-3,7 мкм), но появляются и видимые лучи;

3) с температурой 1300-1800 °С (открытые проемы плавильных печей, расплавленная сталь и др.); их спектр содержит как инфракрасные лучи вплоть до коротких (1,2-1,9 мкм), так и видимые большой яркости;

4) с температурой выше 1800 °С (пламя электродуговых печей, сварочных аппаратов и др.) их спектр излучения содержит наряду с инфракрасными (0,8-1,2 мкм) и видимыми (0,4-0,8 мкм) также и ультрафиолетовые лучи.

Существуют следующие способы защиты от вредного воздействия теплового излучения: тепловая изоляция нагретых поверхностей, экранирование источников теплового излучения, применение воздушного душирования, удаление от источника теплового излучения (дистанционное управление), сокращение времени пребывания в зоне воздействия теплового излучения, использование средств индивидуальной защиты (защитные очки, маски, одежда).

Наиболее распространенным и эффективным способом защиты от теплового излучения является экранирование - создание определенного термического сопротивления на пути теплового потока в виде экранов различных конструкций (жестких глухих, сетчатых, полупрозрачных водяных, воздушно-водяных и др.). Различают теплоотражающие, теплопоглощающие и теплоотводящие экраны. В свою очередь, по степени прозрачности они делятся на три класса: непрозрачные, полупрозрачные и прозрачные. К теплоотражающим экранам относятся жесткие глухие преграды, изготовленные из материалов с высокой степенью отражения такие, как алюминий листовой, белая жесть, альфоль (алюминиевая фольга), а также закаленные стекла с пленочным покрытием. В последнее время получила распространение вакуумно-многослойная изоляция, изготовленная из множества полированных металлических пластин с зазорами, из которых откачен воздух. Эти экраны отличает высокая эффективность (отражается до 58% излучения), малая масса, экономичность. Однако, эти экраны не выдерживают высоких механических нагрузок, эффективность их существенно снижается при отложении на них пыли, при окислении.

В настоящее время нашли широкое применение экраны, выполненные из металлической плотной сетки или из металлических мелких цепей, подвешенных против излучающего проема в один или несколько рядов. Хотя цепные экраны не могут защищать от излучения так хорошо, как глухие (цепные завесы снижают тепловой поток на 60-70%), их применение в ряде случаев оправдано, поскольку они позволяют наблюдать за ходом технологического процесса.

Теплоотводящие экраны (водяные и вододисперсные завесы) применяют в тех случаях, когда через экран необходимо вводить инструмент или заготовки. Коэффициент эффективности водяных завес в значительной степени зависит от спектрального состава излучения м толщины слоя и может достигать 80%. Экраны в виде водяной пленки, стекающей по стеклу более устойчивы по сравнению со свободными водяными завесами. Их эффективность порядка 90%.

В определении оптимальных условий защиты от теплового излучения важное значение имеет характер его спектрального состава, так как материал экрана должен поглотить или отразить лучи, несущие максимум энергии. Как видно из рис.2 для организации эффективной защиты от теплового излучения необходимо устранить в лучистом потоке по возможности наибольший диапазон длинноволнового излучения, которое хорошо поглощается поверхностью кожи человека.

 

 


В этом отношении хорошо зарекомендовали себя прозрачные водяные завесы в виде сплошной тонкой водяной пленки, образующейся при равномерном стекании воды с гладкой поверхности.

Вода является активным поглотителем инфракрасных лучей. Наиболее сильное поглощение отмечается в зоне лучей с длиной волны l=1,5-6,0 мкм.

Слой воды толщиной 1мм полностью поглощает участок спектра с l= 3 мкм, а слой 10 мм - тепловой поток с длиной волны l= 1,5 мкм.

Таким образом, слой воды, применяемый в защитных экранах, должен иметь толщину порядка нескольких мм, при этом однако коротковолновое излучение высокотемпературных источников не будет поглощено, что проявляется, например, в видимости светового излучения: являющегося коротковолновой части теплового излучения. Поэтому тонкие водяные завесы эффективны в основном для экранирования излучений от низкотемпературных источников (до 800 °С).

Интенсивность теплового облучения Е [Вт/м2], которому подвергается человек применительно к условиям данного лабораторного стенда, можно оценить по приближенной формуле:

Е0=0,91S[(Tизл/100)4-(Tобл/100)4]/L2, (6)

где S - площадь излучающей поверхности, м2;

Тизл - температура излучающей поверхности, К;

Тобл - температура облучаемой части тел, К (для приближенного расчета можно принять Тобл = 309 К, то есть =36 °С);

L - расстояние от источника излучения, м.

Формула (6) верна при условии L ³ .

Расчет интенсивности облучения при наличии водяной завесы построен на принципе ослабления лучистого потока при прохождении через мутную среду с определенным оптическим показателем.

Уравнение поглощения лучистой энергии какой-либо средой имеет вид

Е= Eoexp(-dd), (7)

где Е, Ео - интенсивность теплового облучения в данной точке при наличии и отсутствие завесы соответственно, Вт/м2;

d - опытный коэффициент ослабления потока излучений мутной средой, равный для водяной завесы 1,3 мм-1;

d - толщина завесы, мм (при работе принять = 1мм).

В плоско-параллельной системе тел и экранов легко получается формула для определения снижения интенсивности лучистого теплообмена. В этом случае между двумя телами со степенью черноты e= e1 = e2 за счет установки между ними экранов со степенью черноты eэ#e теплообмен уменьшается:

Еэкр/ Е1,2 = [1 + ne (2 - eэ)/ eэ(2 - e)]. (8)

Коэффициент эффективности защитного теплового экрана в общем случае можно рассчитать по формуле:

h = (Ео - Еэ) / Ео , (9)

где Ео и Еэ - соответственно интенсивность облучения в данной точке при отсутствии и наличии экрана, Вт/м2.

Согласно требованиям ГОСТ 12.4.123-83 допустимая интенсивность телового облучения человека на рабочем месте Е не должна превышать 350 Вт/м2.

 

Применяемое оборудование

Работа выполняется на лабораторной установке. Источником излучения служит инфракрасный излучатель, нагреваемый действием электрического тока. С помощью отражателя создается направленный поток теплового излучения. Установка имеет четыре защитных экрана в виде цепной, водяной, стеклянной и комбинированной (стекло+вода) завес. Цепная завеса состоит из металлических цепей, установленных на пути потока излучения. Устройство для создания водяной завесы состоит из металлической ванны с водосливом, в которую подается вода из сливного поддона и двух направляющих в виде металлических прово­дов. Стеклянная завеса из рамки со вставленным стеклом, установленномна пути потока излучения.

Измерение интенсивности облучения на рабочем месте проводится с помощью актинометра, укрепленного на передвижном металлическом каркасе с возможностью перемещения от источника излучения в пределах 0,2-0,4 м.

Повышение чувствительности актинометра достигается с помощью усилителя. Измерение температуры излучающей поверхности нагреваемого элемента производится с помощью оптического пирометра с пределами измерения 300-5000 °С.

Указания по технике безопасности:

1. Во время работы запрещается оставлять без надзора включённый стенд.

2. При обнаружении в стенде какой-либо неисправности необходимо прекратить работу, отключить стенд и сообщить о случившемся преподавателю или лаборанту.

 

Порядок выполнения работы

1. Включить стенд с помощью кнопки «ВКЛЮЧЕНИЕ СТЕНДА»; загорание подсвета кнопки сигнализирует о наличии напряжения.

2. Включить нагревательный элемент нажатием кнопки «ИСТОЧНИК ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ» и дать ему прогреться в течение 20 секунд. Bключить питание пирометра.

3. Подвести под окно излучения оптический пирометр и измерить температуру в двух режимах температуры излучателя (больше, меньше), при этом необходимо руководствоваться инструкцией по эксплуатации оптического пирометра.

4. Включить питание актинометра, подвести под окно излучения датчик и произвести измерение интенсивности теплового облучения при отсутствии экранов на различных расстояниях от источника излучения.

Внимание: При каждом измерении следует на 2-3 с поднять крышку теплоприем.ника актинометра и снять показания, после чего быстро закрыть ее.

Результаты измерений разделить на коэффициент усиления Кус=10 и записать в таблицу 1, предварительно переведя показания актинометра (кал/ мин.см2 в Вт/м2; 1кал/мин.см2 = 700 Вт/м2).

5. Переключателем, расположенным на верхней крышке стенда, установить защитные экраны поочередно (цепная завеса, стекло, водяная завеса, водяная завеса на стекле), при этом измерять интенсивность теплового облучения на различных расстояниях (0,2-0,4 м) и занести в таблицу 1.

Таблица 1

Интенсивность теплового облучения на рабочем месте

(результаты измерений) Вт/ м2.

Условия измерений Расстояние от источника излучения L, м
  0,20 0,25 0,30 0,35 0,40
При отсутствии защитного экрана При наличии цепной завесы При наличии стекла При наличии водяной завесы При наличии комбинированной (стекло и вода) завесы          

6. Отключить питание актинометра, нагревательный элемент и насос, затем выключить стенд.

 

Содержание отчета

Отчет должен содержать:

1. Результаты измерения интенсивности теплового излучения на разных расстояниях от источника излучения при отсутствии и наличии защитных экранов, представленные в виде таблице 1.

2. Результаты измерений температуры источника излучения.

3. Кривые зависимости E=f(L) по результатам измерений и расчета, построенные на одном графике.

4. Результаты определения по графику E=f(L) значений при которых выполняется требование ГОСТ, для условий отсутствия и наличие защитных экранов.

5. Результат расчета длины волны с максимальной энергией теплового излучения.

6. По заданию преподавателя рассчитать необходимое количество теплоотражающих экранов со степенью черноты для снижения теплового потока в N раз, используя формулу 8.

7. Результаты расчета коэффициентов эффективности защитных экранов для значения L = 0,20 м (по данным таблицы 1).

8. Выводы эффективности защитных тепловых экранов.

 

Контрольные вопросы

1.Каков характер прохождения энергии теплового излучения через воздушное пространство?

2.Как проявляется воздействие теплового облучения на организм человека?

3.От чего зависит интенсивность теплового облучения на ра­бочем месте?

4.Каковы основные мероприятия охраны труда по защите от теп­лового облучения в производственных условиях?

5.Чему равно допустимое по ГОСТ значение интенсивности теп­лового облучения на рабочем месте?

6.Как рассчитать длину волны с максимальной энергией тепло­вого излучения - lmax?

7.Какой защитный теплопоглощапций экран использовать - цеп­ной дли водяную завесу, исходяиз значения lmax и отражательной способности кожи человека?

8.Как рассчитать коэффициент эффективности защитного экрана?

 

Литература

Охрана труда / Под ред. Б.А. Князевского. М.: Высшая школа, 1982.- С. 55-57.

 



<== предыдущая лекция | следующая лекция ==>
 | Указания по технике безопасности. Оценка эффективности защитного заземления
Поделиться с друзьями:


Дата добавления: 2017-03-12; Мы поможем в написании ваших работ!; просмотров: 1970 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Сложнее всего начать действовать, все остальное зависит только от упорства. © Амелия Эрхарт
==> читать все изречения...

2187 - | 2073 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.