Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Тема №4. Метод касательной




Данные формулы являются основными расчетными формулами, применяемыми при обработке, анализе и интерпретации данных ГДИС на неустановившихся режимах при упругом режиме фильтрации. Так, из формулы следует, что графическое изображение зависимости изменения давления в скважине (КВД-КПД) от логарифма времени (т.н. полулогарифмическая анаморфоза) представляется с некоторого момента прямолинейным, где по уклону и отрезку , отсекаемому на оси ординат продолжением прямолинейного участка графика, возможно определение параметров пласта.

 

Рисунок 1 – Схематическое представление КПД-КВД в полулогарифмических координатах.

 

Вышеизложенный простейший метод был предложен одним из первых и является традиционным и общепринятым. Часто его называют или методом обработки КПД-КВД без учета притока, или методом касательной, полулогарифмической анаморфозы, или методом МДХ (Миллера-Дайса-Хэтчинсона).

Основная трудность, сложность и неопределенность этого метода в изложенном варианте обработки заключается в необходимости предварительной оценки времени t1, начиная с которого нужно проводить прямолинейный участок КВД. Это время ti на замеренных КВД зависит от ряда факторов, вызванных несоблюдением внутренних граничных условий о мгновенном закрытии скважины (влияние ствола скважины и др.), которые могут искажать начальный участок реальных КВД и не учитывающихся в уравнении (1.28). Так, например, общее время t снятия КВД может быть очень коротким и меньшим t1>t. Такую «короткую», фактическую КВД нельзя обрабатывать вышеизложенным методом (хотя прямолинейный участок может быть формально выделен согласно пункту 2), так как при этом могут быть получены ошибочные параметры пласта.

В работах отечественных и зарубежных исследователей метод без учета притока получил дальнейшее развитие с целью устранения этой неопределенности и более обоснованного выбора времени для начала прямолинейного участка КВД в полулогарифмических координатах.

 

Тема №5. Метод Хорнера

Пусть в некоторый момент времени в невозмущенном бесконечном однородном пласте с пластовым давлением Рпл мгновенно пущена в работу добывающая скважина с постоянным дебитом q и через промежуток времени Т она мгновенно (т.е. на забое) остановлена - предполагается мгновенное прекращение притока жидкости к забою скважины. В интервале времени 0<t<T на забое происходит понижение забойного давления APc(t), которое описывается основной формулой теории упругого режима для РФП (1.28):

Для случаев фильтрации упругой жидкости в ограниченных открытых и закрытых пластах решения дифференциального уравнения (1) представляются более сложными формулами (бесконечными рядами по функциям Бесселя), чем для бесконечного пласта.

Начиная с момента остановки Т, которое принимается за начало отсчета времени снятия КВД происходит повышение забойного давления - Pc(t). Схематическое представление.

процесса изменения давления и дебитов при пуске и остановке скважины приведено на рисунке 2.

Рисунок 2 – Схема процессов изменения давления по методу суперпозиции

 

Для определения забойного давления в скважине в любой момент времени после ее остановки используется принцип суперпозиции. Так, следуя методу суперпозиции, мысленно допустим и заменим реальную картину изменения давления и дебитов другой - воображаемой эквивалентной картиной после остановки скважины. А именно, рекомендуется считать, что добывающая скважина не закрывается в момент времени Т, а продолжает работать и вызывает понижение давления в пласте и на забое скважины ∆Pc'(t) в моменты времени t>T:

С момента времени Т в точке пласта, где расположена добывающая скважина, считается пущенной в работу воображаемая нагнетательная скважина (источник) с дебитом (приемистостью) «-q», которая вызывает повышение давления ∆Pc''(t):

где t - время, отсчитываемое с момента остановки скважины.

Считается, что обе воображаемые скважины, добывающая и нагнетательная, при t>T работают независимо одна от другой. Таким образом выполняется условие задачи о закрытии скважины:

• дебит скважины после закрытия равен нулю: q=q+(-q)=0

• количество воображаемой нагнетаемой жидкости равно извлекаемому (рис. 1.11)

Тогда понижение давления, отсчитываемое с начального Рпл в момент времени t>T, определяется по методу суперпозиции наложением действий источника и стока:

 

Формулу (1.36), характеризующую поведение КВД при выше сформулированных условиях, часто называют формулой Хорнера.

Метод Хорнера определения параметров пласта по КВД сводится к следующему. Фактическая КВД строится в координатах , которые порой называют координатами Хорнера. Пользуясь диагностическими признаками, выделяют и проводят прямолинейный участок графика и находят уклон – , по величине которого определяется гидропроводность пласта, как и в методе касательной.






Поделиться с друзьями:


Дата добавления: 2017-04-04; Мы поможем в написании ваших работ!; просмотров: 1926 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Люди избавились бы от половины своих неприятностей, если бы договорились о значении слов. © Рене Декарт
==> читать все изречения...

2475 - | 2271 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.