Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Первый закон Кирхгофа в дифференциальной форме




 

Если в проводящей среде выделить некоторый объем, по которому протекает постоянный, не изменяющийся во времени ток, то можно сказать, что ток, который войдет в объем, должен равняться току, вышедшему из него, иначе в этом объеме происходило бы накопление зарядов, что не подтверждается опытом. Сумму входящего в объем и выходящего из объема токов записывают так:

Равенство останется справедливым, если обе его части разделить на объем:

Очевидно, что последнее соотношение будет справедливо и в том случае, если объем, находящийся внутри замкнутой поверхности, устремить к нулю:

Таким образом, для постоянного, неизменного во времени поля в проводящей среде

(42.6)

Это соотношение называют первым законом Кирхгофа в дифференциальной форме. Оно означает, что в установившемся режиме в любой точке поля нет ни истока, ни стока линий тока проводимости.

 

Уравнение Лапласа для электрического поля в

Проводящей среде

 

Напряженность электрического поля в проводящей среде, как и в электростатическом поле, .

В неизменном во времени поле

(42.7)

Если среда однородна и изотропна (γ =const), то можно вынести за знак дивиргенции и, следовательно,

(42.8)

или

. (42.9)

Таким образом, поле в однородной проводящей среде подчиняется уравнению Лапласа. Поле постоянного тока в проводящей среде является полем потенциальным. В нем, в областях, не занятых источниками,

 

6. Переход тока из среды с проводимостью γ 1 в среду с

проводимостью γ 2. Граничные условия

Выясним, какие граничные условия выполняются при переходе тока из среды с одной проводимостью в среду с другой проводимостью.

Возьмем на границе раздела сред – линия 00 (рис. 42.2) замкнутый контур 1234. Составим циркуляцию вектора вдоль этого контура. Стороны 12 и 34 его весьма малы по сравнению со сторонами 23 и 41 (длину последних обозначим dl).

Так как вдоль любого замкнутого контура равен нулю, то он равен нулю и для контура 12341.

В силу малости отрезков 12 и 34 пренебрежем составляющими интеграла вдоль этих путей и тогда

или , (42.10)

т.е. на границе раздела равны тангенциальные составляющие напряженности поля.

На границе раздела равны нормальные составляющие плотностей токов. Докажем это.

 
 

На границе раздела выделим сплющенный параллелепипед (рис. 42.3,а). Поток вектора , втекающий в объем через нижнюю грань, равен ; поток вектора , вытекающий из объема через верхнюю грань . Так как , то

; . (42.11)

Следовательно, при переходе тока из среды с одной проводимостью в среду с другой проводимостью непрерывна тангенциальная составляющая вектора , то есть (но ), и непрерывна нормальная составляющая плотности тока (но ).

Отсюда следует, что полные значения вектора и вектора в общем случае меняются скачком на границе раздела.

Найдем связь между углом падения и углом преломления . В соответствии с рис. 42.3,б:

; или . (42.12)

Если ток переходит из среды с большой проводимостью (например, из металла) в среду с малой (например, в землю), то тангенс угла преломления меньше тангенса угла падения и, следовательно, угол меньше угла . Если весьма мало, то угол .

 

Вопросы для самоконтроля

 

1. Какой ток называют током проводимости, а какой – током смещения?

2. Как связаны вектор плотности тока и ток?

3. Проделайте вывод закона Ома в дифференциальной форме.

4. Что понимают под сторонней напряженностью электрического поля?

5. Почему уравнение называют обобщенным законом Ома, а также вторым законом Кирхгофа?

6. Проделайте вывод первого закона Кирхгофа в дифференциальной форме и поясните его физический смысл.

7. Получите выражение для закона Джоуля-Ленца в дифференциальной форме.

8. Докажите, что электрическое поле в проводящей среде подчиняется уравнению Лапласа.

9. Сформулируйте условия на границе раздела двух сред с разной удельной проводимостью.





Поделиться с друзьями:


Дата добавления: 2017-03-11; Мы поможем в написании ваших работ!; просмотров: 1071 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Ваше время ограничено, не тратьте его, живя чужой жизнью © Стив Джобс
==> читать все изречения...

2220 - | 2164 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.