Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Током смещения сквозь произвольную замкнутую поверхность S называется физическая величина, равная потоку вектора плотности тока смещения сквозь эту поверхность

УРАВНЕНИЯ МАКСВЕЛЛА

 

Ограниченность теории дальнодействия. Гипотеза Максвелла. Вихревое электрическое поле. Ток смещения. Система уравнений Максвелла для электромагнитных полей в интегральной форме. Закон неразрывности заряда.

 

1. Открытое Фарадеем явление электромагнитной индукции поставило вопрос о природе ЭДС в неподвижном контуре, находящемся в переменном магнитном поле.

1.1. Максвелл предложил гипотезу, в соответствии с которой всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в контуре.

1.2. Теория Максвелла:

1.2.1. Последовательная теория единого электромагнитного поля произвольной системы электрических зарядов и токов.

1.2.2. Решает основную задачу электродинамики – по заданному распределению зарядов и токов определяются характеристики их электрического и магнитного полей.

1.2.3. Является обобщением важнейших законов для электрических и электромагнитных явлений – теоремы Остроградского-Гаусса, закона полного тока, закона электромагнитной индукции.

1.2.4. Феноменологическая – в ней не рассматривается дискретное строение среды и механизм процессов, происходящих в среде в электромагнитном поле. Свойства среды – относительная диэлектрическая проницаемость, относительная магнитная проницаемость и удельная электрическая проводимость (известны из опыта).

1.2.5. Макроскопическая – в ней изучаются макроскопические электромагнитные поля таких систем зарядов и токов, пространственные размеры которых много больше размеров атомов и молекул.

1.2.6. Является теорией близкодействия – электрические и магнитные взаимодействия осуществляются посредством электромагнитного поля и распространяются со скоростью света

1.3. Макроскопические поля в теории Максвелла представляют собой усредненные непрерывно изменяющиеся микрополя, создаваемые микроскопическими зарядами и токами. Усреднение производится по интервалам времени, значительно превышающим периоды внутриатомных процессов, и по объемам, значительно превышающим размеры атомов и молекул.

2. Первое уравнение Максвелла является обобщением закона электромагнитной индукции, которое в интегральной форме имеет вид

2.1. Из выражения для магнитного потока следует

Интеграл в правой части является функцией только от времени.

2.2. Неравенство нулю циркуляции вектора напряженности электрического поля по замкнутому контуру означает, что возбуждаемое переменным магнитным полем электрическое поле является вихревым, как и само магнитное поле.

2.3. Из первого уравнения Максвелла следует, что всякое переменное магнитное поле возбуждает в окружающем пространстве вихревое электрическое поле.

2.4. По теореме Стокса в векторном анализе

где ротор вектора Е выражается определителем

что позволяет записать первое уравнение Максвелла в дифференциальном виде

3. Второе уравнение Максвелла представляет собой обобщение закона полного тока.

3.1. Второе уравнение Максвелла основано на предположении, что всякое изменение электрического поля вызывает возникновение в окружающем пространстве вихревого магнитного поля.

3.2. Количественной мерой магнитного действия переменного электрического поля является ток смещения.

Током смещения сквозь произвольную замкнутую поверхность S называется физическая величина, равная потоку вектора плотности тока смещения сквозь эту поверхность

с плотностью тока смещения

где D – вектор электрического смещения.

3.4. Токи смещения проходят по тем участкам цепи переменного тока, где отсутствуют проводники (например, между обкладок конденсатора).

3.5. В диэлектрике вектор электрического смещения равен

где Р – вектор поляризованности.

Тогда плотность тока смещения

где – плотность тока смещения в вакууме, а – плотность тока поляризации (смещение зарядов в молекулах неполярных диэлектриков или поворот диполей полярных диэлектриков).

3.6. Токи смещения не сопровождаются выделением теплоты.

3.7. Второе уравнение Максвелла в интегральной форме имеет вид

3.8. По теореме Стокса

а полный ток

вследствие чего в дифференциальном виде второе уравнение Максвелла имеет вид

4. Для областей поля, где нет макротоков

где знак минус в первом уравнении Максвелла означает, что вектора Н и dD/dt соответствуют правовинтовой системе, а вектора Е и dB/dt – левовинтовой.

5. Третье и четвертое уравнения Максвелла представляют собой обобщения теоремы Остроградского-Гаусса для электрического и магнитного полей

5.1. В интегральной форме эти уравнения имеют вид

где величина свободных зарядов, охватываемых замкнутой поверхностью S выражается через объемную плотность заряда

5.2. По теореме Гаусса из векторного анализа

где дивергенция вектора определяется выражением

5.3. В дифференциальной форме третье и четвертое уравнения Максвелла имеют вид

где – объемная плотность свободных зарядов в рассматриваемой точке поля.

6. Полная система уравнений Максвелла включает четыре уравнения

1. 2.

3. 4.

6.1. Из первых двух уравнений следует, что переменные электрическое и магнитное поля неразрывно связаны друг с другом, образуя единое электромагнитное поле. Разные знаки в правых частях первых двух уравнений обеспечивают устойчивость электромагнитного поля.

6.2. Уравнения Максвелла в дифференциальной форме предполагают, что все величины в пространстве и времени изменяются непрерывно. Если же существуют поверхности разрыва (где свойства среды меняются скачком), то более общей является система интегральных уравнений.

6.3. Для стационарных электрического и магнитного полей

и, следовательно, эти поля существуют независимо друг от друга и описываются соответственно уравнениями электростатики

и магнитостатики

6.4. Систему уравнений Максвелла необходимо дополнить " материальными уравнениями ", которые характеризуют электрические и магнитные свойства среды

а также граничными условиями

где σ – поверхностная плотность свободных зарядов, а – вектор линейной плотности поверхностного тока проводимости.

 



<== предыдущая лекция | следующая лекция ==>
Задачи контрольной работы № 3 | Напряженность магнитного поля тороида.
Поделиться с друзьями:


Дата добавления: 2017-03-18; Мы поможем в написании ваших работ!; просмотров: 246 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Человек, которым вам суждено стать – это только тот человек, которым вы сами решите стать. © Ральф Уолдо Эмерсон
==> читать все изречения...

2301 - | 2152 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.