Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Биосинтез насыщенных жирных кислот




Протекает в цитозоле с участием ацил-переносящего белка. Для образования жирных к-т с кол-вом С=2n,цикл должен повторится n-1 раз.В результате образуется жирные кис-ты,включают 16 атамов углерода или более.Непредельные жирные кислоты образутся путем дегидрирования предельных.

Последовательность реакций, происходящих при синтезе жирных

кислот:

Далее цикл реакций повторяется

 

БИОЭНЕРГЕТИКА

Живые организмы представляют собой термодинамически неустойчивые систе­мы. Для их формирования и функционирования необходимо непрерывное поступ­ление энергии в форме, пригодной для многопланового использования. Биологические виды энергии. Энергетические превращения в живой клет-

ке подразделяют на две группы: локализованные в мембранах и протекающие в цитоплазме. В каждом случае для «оплаты» энергетических затрат используется своя «валюта»: в мембране это ΔμН+ или ΔμNa+, а в цитоплазме – АТФ, креатинфосфат и другие макроэргические соединения. Непосредственным источником АТФ являются процессы субстратного и окислительного фосфорилирования. Процессы субстратного фосфорилирования наблюдаются при гликолизе и на одной из стадий цикла трикарбоновых

кислот. Генерация ΔμН+ и Δ μ Na, используемых для окислительного фосфорилирования, осуществляется в процессе транспорта электронов в дыхательной цепи энергосопря-

гающих мембран. Энергия разности потенциалов на сопрягающих мембранах может обратимо превращаться в энергию АТФ. Эти процессы катализируются Н+-АТФ-синтазой в мембранах, генерирующих протонный потенциал, или Na+-АТФ-синтазой. Энергия субстратов дыхания утилизируется ферментами фотосинтетической или дыхательной редокс-цепи. Генерируемый потенциал используется для совершения полезной работы, в частности для образования АТФ. Будучи макроэргическим соединением, АТФ выполнняет функцию аккумулирования биологической энергии и ее последующего использования для выполнения клеточных функций. «Макроэргичность» АТФ объясняется рядом особенностей его молекулы. Это прежде всего высокая плотность зарядов, сконцентрированная в «хвосте» молекулы. Продукты этого гидролиза представляют собой АДФ и неорганический фосфат и далее – АМФ и неорганический фосфат. Генерируемый потенциал используется для совершения полезной работы, в частности для образования АТФ. Распад органических соединений в живых тканях, сопровождающийся потреблением молекулярного кислорода и приводящий к выделению углекислого газа и воды и образованию биологических видов энергии, называется тканевым дыханием. Итоговая реакция тканевого дыхания будет выглядеть следующим образом:

С6Н12О6 + 6O2 = 6СO2 + 6Н2O + 2780 кДж/моль

В настоящее время биологическое окисление определяется как совокупность реакций окисления субстратов в живых клетках, основная функция которых - энергетическое обеспечение метаболизма. Уравнение С6Н12Об = 2С3Н6О3 + 65 кДж/моль. описывает суммарный результат многоступенчатого процесса, приводящего к образованию молочной кислоты и протекающего без участия кислорода: Этот путь отражает, энергетическое обеспечение простейших форм жизни, функционировавших в бескислородных условиях. В аэробных условиях продукты бескислородного окисления становятся субстратами цикла трикарбоновых кислот, в ходе которого образуются восстановленные дыхательные переносчики НАДФН, НАДН и флавиновые коферменты. Организация и функционирование дыхательной цепи. В клетках эукариот

расположена во внутренней мембране митохондрий, у дышащих бактерий – в цитоплазматической мембране и специализированных структурах – мезосомах, или тилакоидах. Компоненты дыхательной цепи встроены в митохондриальную мембрану в виде 4 белково-липидных комплексов: НАДН-КоQН2-редуктаза (комплекс I), сукцинат-КоQ-редуктаза (комплекс II), КоQН2-цитохром c -редуктаза (комплекс III) и цитохром а -цитохромоксидаза (комплекс IV).

Если субстратом окисления служат α-кетокислоты, в переносе электронов на

НАД+ участвуют липоатсодержащие дегидрогеназы. В случае окисления пролина,глутамата, изоцитрата и других субстратов перенос электронов происходит непосредственно на НАД+. Восстановленный НАД в дыхательной цепи окисляется НАДН-дегидрогеназой, содержащей железосерный белок (FeS) и ФМН и прочно связанной с дыхательной цепью. KoQ (убихинон) который способен находиться и в восстановленном, и окисленном состоянии. Это свойство определяет его роль в дыхательной цепи - служить коллектором восстановительных эквивалентов, поставляемых в дыхательную цепь через флавиновые дегидрогеназы. Железосерный белок участвует в окислительно-восстановительном процессе, протекающем по одноэлектронному типу. Первый участок локализации FeS находится между ФМН и KoQ, второй - между цитохромами b и c 1. Это соответствует тому факту, что со стадии ФМН путь протонов и электронов разделяется:1) накапливаются в митохондриальном матриксе, а 2)идут на гидрофобные переносчики - KoQ и цитохромы. Цитохромы в дыхательной цепи выстроены в порядке возрастания окислительно восстановительного потенциала. Они представляют собой гемопротеины В процессах тканевого дыхания наиболее важную роль играют цитохромы b, с 1, с, а и а 3. Свободное окисление. Задача– превращения природных или неприродных субстратов.Они осуществляются ферментами диоксигеназами и монооксигеназами. Окисление протекает при участии специализированных цитохромов В реакциях свободного окисления участвуют также кислород и восста-

новленные дыхательные переносчики (чаще всего НАДФН). Акцептором электронов является цитохром Р-450. Окисление

субстрата протекает по следующей схеме:

SH + O2 –> SOH

Механизм действия оксигеназ включает изменение валентности входящих в их

состав ионов двухвалентных металлов (железа или меди). Диоксигеназы присоединяют к субстрату молекулярный кислород, активируя его за счет электрона атома железа в активном центре. Запасание Е происходитв виде богатых Е хим. связей особого класса соединений – нуклеозидтрифосфатов. Существуют высоко энергетические и низко энергетические фосфаты(различаются величиной свободной энергии гидролиза фосфатной связи).Высокоэнергетические фосфаты имеют высокую макроэргическую связь-химическая связь, гидролиз которой характеризуется значениями энергии по­рядка —30 кДж/моль и выше. К ним относят АТФ,АДФ,АМФ,Фн,ионы магния,УТФ,ЦТФ,ГТФ,ТТФ,креатинфосфат, пирофосфат,ацетил-КоА.

Образование этих соединений зависит от Е АТФ,рН(7.0),Т=37.

Варианты освобождения фосфатных связей АТФ:

1.отщепление концевого фосфата АТФ; 2.пирофосфатное расщепление АТФ; Накопление Е может происходить и при гидролизе АДФ.В общем накопление Е в фосфатных связях макроэргов-основа переноса Е в клетке. Выделяют 3 типа перехода Е АТФ:

1.в Е химических связей;

2.в тепловую Е;

3.в Е для совершения работы (осмотической,механической и др.).

 

ГОРМОНЫ

– вещества органической природы, вырабатывающиеся в специализированных клетках же-

лез внутренней секреции, поступающие в кровь и оказывающие регулирую-

щее влияние на обмен веществ и физиологические функции. Классификации гормонов,основанной на их химической природе. В соответствии с этой классификацией различают три группы истинных гормонов: 1) пептидные и белковые

гормоны, 2) гормоны – производные аминокислот и 3) гормоны стероид-

ной природы. Четвертую группу составляют эйкозаноиды – гормоноподоб-

ные вещества, оказывающие местное действие. 1)Пептидные и белковые гормоны включают до 250 и более

аминокислотных остатков. Это гормоны гипоталамуса и гипофиза а также гормоны поджелудочной железы (инсулин, глюкагон). 2)Гормоны – производные аминокислот в основном представлены производны амиаминокислоты тирозина(адреналин и норадреналин) и гормоны щитовидной железы (тироксин и его производные). Гормоны 1-й и 2-й групп хорошо растворимы в воде.3)Гормоны стероидной природы представлены жирорастворимыми гормонами коркового вещества надпочечников (кортикостероиды), половы-

ми гормонами (эстрогены и андрогены). Эйкозаноиды, являющиеся производными полиненасыщенной жирной кислоты (арахидоновой. Эти нерастворимые в воде и нестабильные соединения. В зависимости от того, где в клетке происходит передача информации, можно выделить 3 варианта действия гормонов: 1)мембранный Реализуется в том месте,где гормон связан с плазматической мембраной,при этом изменяется проницаемасть мембраны.Пр.инсулин в кл-ку (перенос глюкозы). 2)мембранно-внутриклеточный Чаще всего встречается.Хар-ся тем,что гормон непосредственно не проникает в клетку,а влияет на обмен внутриклеточный,через посредника(находящегося в клетке). Описаны 3 группы посредников: А)циклические нуклеазы (цАМФ и цГМФ). Б)ионы кальция В)2,5-олигоадениловый нуклеотид. В цитоплазматической мембране встречается аденилатциклаза, имеются участки N и С а также узнающий. Гормон + рецептор→N- белок (изменяет его конфигурацию) → образуется ГТФ.В результате N- белок +ГТФ→ активизирует собственно Аденилатциклазу =>нарабатывает циклический АМФ внутри клетки. Работает аденилат циклаза до тех пор пока сохран. комплекс гормон + рецептор. Одна молекула такого комплекса дает возможность к образованию от 10 до 100 молекул циклических АМФ. Под влиянием одного гормона могут активизироваться или угнетаться различные биохим. Процессы. Это связано с каким рецептором образует комплекс гормон: н-р, адреналин может связываться или с α- или β-рецепторами.Если связь с α то,вкл.аденилатциклаза, если β – гуанилатциклаза, Т.о. характер изменения метаболизма в Кл. зависит не только от вида гормона, но и от того с камим рецептором он комлексируется. Инактивация циклических нуклеотидов происходит с помощью фосфодиэстераз. Б) Ионы Са внутри кл. содержатся незначительно, поступают по двум Са каналам (откачка осуществляется в присутствии Са АТФазы в обмен на Na) В клетке Са связан с белками цитоплазмы. Один из них кальмодулин. В) Сам олигоадениловый нуклеотид является внутриклеточным посредником. Смешанный тип передачи информации- гормоны этого типа реализуют свой эффект через 2 и 3 механизмы. 3)цитозольный. Характерен для гормонов с липофильными свойствами. Например стероиды. Такие гормоны проникают через мембраны в клетку (комплексируются с рецепторами цитозоля.) Этот комплекс воздействует на ядро, где изменяет доступность для транскрипции матриц ДНК. При этом изменяется скорость синтеза специальных белков-ферментов, а следовательно скорость и направленность метаболических процессов в кл.Смешанный тип передачи информации- гормоны этого типа реализуют свой эффект через 2 и 3 механизмы. Пример- йодтиронин.

 





Поделиться с друзьями:


Дата добавления: 2017-03-18; Мы поможем в написании ваших работ!; просмотров: 387 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наука — это организованные знания, мудрость — это организованная жизнь. © Иммануил Кант
==> читать все изречения...

2242 - | 2053 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.