Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Задачи к контрольным заданиям 3 страница




 

Объединяя полученные результаты, запишем

Ответ:

1. траектория точки - эллипс, имеющий уравнение ;

2.

3.

4. ;

5. ;

6. ; ;

.

 

 

Обсудим некоторые особенности и частные случаи, которые могут встретиться в задачах.

 

Если траектория точки – прямая линия, то и, следовательно, . Найденное по величине и направлению ускорение равно ускорению .

Если траектория точки – окружность, то , где R – радиус окружности (определяется из уравнения траектории). Если скорость V точки найдена, то . Вектор направлен к центру окружности. Касательное ускорение , полное ускорение .


Задача К2

(тема: “Кинематика плоского механизма”)

Плоский механизм состоит из стержней 1-4 и ползуна В, соединенных друг с другом и с неподвижными опорами О1 и О 2, шарнирами (рис. К2.0-К2.9). Длины стержней: l1 = 0,4 м, l2 = 1,2 м, l3 = 1,4 м, l4 = 0,8 м. Положение механизма определяется углами a, b, g, j, q, которые вместе с другими величинами заданы в табл. К2. Точка D на всех риcyнках и точка K на рис. К2.7-К2.9 расположены в середине соответствующего стержня.

 

Определить величины, указанные в таблице в столбце "Найти". Найти также ускорение аА точки А стержня 1, если стержень 1 имеет в данный момент времени угловое ускорение ɛ 1 = 10 с-2.

 

Таблица К2

Номер условия Углы Дано Найти
w 1 1/с w 4 1/с uB м/с
              - -
            -   -
            - -  
              - -
            -   -
            - -  
              - -
            -   -
            - -  
              - -

 

Дуговые стрелки на рисунках показывают, как при построении чертежа должны откладываться соответствующие углы, т.е. по ходу или против хода часовой стрелки (например, угол g на рис. 1 следует отложить от стержня DE против хода часовой стрелки, а на рис. 2 - от стержня АЕ по ходу часовой стрелки).

Построение чертежа начинать со стержня, направление которого определяется углом a; ползун В и его направляющие для большей наглядности изобразить, как в примере К2 (см. рис. К2). Заданную угловую скорость считать направленной против хода часовой стрелки, а заданную скорость uВ- от точки В к b.

Указания. Задача К2 - на исследование плоскопараллельного движения твердого тела. При ее решении для определения скоростей точек механизма и угловых скоростей его звеньев следует воспользоваться теоремой о проекциях скоростей двух точек тела и понятием о мгновенном центре скоростей, применяя эту теорему (или это понятие) к каждому звену механизма в отдельности.

Теорема сложения скоростей (метод полюса)  
Абсолютная скорость любой точки B тела равна векторной сумме скорости полюса и скорости точки B в относительном движении вокруг полюса A: . Вектор , модуль .  
 
 
 
Теорема о проекциях скоростей    
Проекции абсолютных скоростей точек на прямую, соединяющую эти точки, алгебраически равны. .    

 

Метод мгновенного центра скоростей тела (МЦС)
Определение: МЦС тела называется точка подвижной плоскости, абсолютная скорость которой в данный момент времени равна нулю . МЦС тела находится на пересечении перпендикуляров, проведенных в двух точках тела к векторам абсолютных скоростей этих точек.
  Если точку взять за полюс, то приходим к выводу: абсолютные скорости точек тела соответствуют мгновенному повороту тела вокруг МЦС тела. , , , .

Пример К2. Механизм (рис. К2, а) состоит из стержней 1, 2, 3, 4 и ползуна В, соединенных друг с другом и с неподвижными опорами О1 и О2 шарнирами.

Дано: a = 120°, b = 60°, g = 90°, j = 0°, q = 30°. AD = DE, l 1 = 0,6 м, l 3 = 1,2 м, w 1 = 5 с-1, ɛ 1 =8 с-2.

Определить: и аA.

Решение. 1. Строим положение механизма в соответствии с заданными углами (рис. К2, б).

2. Определяем uE. Точка Е принадлежит стержню AЕ. Чтобы найти uE, надо знать скорость какой-нибудь другой точки этого стержня и направление uE. По данным задачи можем определить

(1)

Направление найдем, учтя, что точка Е принадлежит одновременно стержню 0 2 Е, вращающемуся вокруг О 2; следовательно, ^ 0 2 Е. Теперь, зная и направление , воспользуемся теоремой о проекциях скоростей двух точек тела (стержня АЕ) на прямую, соединяющую эти точки (прямая АЕ). Сначала по этой теореме устанавливаем, в какую сторону направлен вектор (проекции скоростей должны иметь одинаковые знаки). Затем, вычисляя эти проекции, находим

(2)

3. Определяем uВ. Точка В принадлежит стержню BD. Следовательно, по аналогии с предыдущим, чтобы определить uВ, надо сначала найти скорость точки D, принадлежащей одновременно стержню АЕ. Для этого, зная и , построим мгновенный центр скоростей (МЦС) стержня АЕ; это точка С 2, лежащая на пересечении перпендикуляров к и , восставленных из точек А и Е и перпендикулярны стержни 1 и 4). По направлению вектора определяем направление поворота стержня АЕ вокруг МЦС С 2. Вектор будет перпендикулярен отрезку С 2 D, соединяющему точки D и С 2, и направлен в сторону поворота. Величину найдем из пропорции

(3)

Чтобы вычислить С 2 D и С 2 А, заметим, что D 2 E - прямоугольный, так как острые углы в нем равны 30 и 60°, и что С 2 А = AE sin 30° = 0,5 АЕ = AD. Тогда D 2 D является равносторонними С 2 А = С 2 D. В результате равенство (3) дает

(4)

Так как точка В принадлежит одновременно ползуну, движущемуся вдоль направляющих поступательно, то направление известно. Тогда, восставляяиз точек В и D перпендикуляры к скоростям и , построим МЦС С 3 стержня BD. По направлению вектора определяем направление поворота стержня BD вокруг центра С 3. Вектор будет направлен в сторону поворота стержня BD. Из рис. К2, б видно, что Ð С 3 DB = 30°, a Ð D С 3 B = 90°, откуда С 3 B = l 3 sin 30°, С 3 D = l 3 cos 30°. Составив теперь пропорцию, найдем, что

(5)

4. Определяем w3. Так как МЦС стержня 3 известен (точка С3), то

5. Определяем аA. Так как ɛ 1 известно, то аAt=l 1 ɛ 1. Далее , или . Тогда . Произведя вычисления, получим аА = 15,8 м/с2.

Ответ: uЕ = 5,2 м/с, uВ = 1,7 м/с, w3 = 2,9 с-1, аА = 15,8 /с2.

 

Задача КЗ

 

Прямоугольная пластина (рис. КЗ.О-К3.5) или круглая пластина радиусом R = 60 см (рис. К3.6-К3.9) вращается вокруг неподвижной оси с постоянной угловой скоростью w, заданной в табл. КЗ (при знаке минус направление w противоположно показанному на рисунке). Ось вращения на рис. КЗ.О-КЗ.З и КЗ.8, КЗ.9 перпендикулярна плоскости пластины и проходит через точку О (пластина вращается в своей плоскости); на рис. К3.4-К3.7 ось вращения 0<9, лежит в плоскости пластины (пластина вращается в пространстве).

 

Таблица КЗ

Номер условия   w, 1/с Рис.0-5 Рис. 6-9
b, см s = AM = f (t) l
  -2   R
      R
      R
  -4  
  -3   R
      R
     
  -5   R
      R
  -5  

По пластине вдоль прямой ВD (рис. КЗ.О-КЗ.5) или по окружности радиуса R, т.е. по ободу пластины (рис. К3.6-К3.9), движется точка М. Закон ее относительного движения, выражаемый уравнением s = AM = f (t) (s - в сантиметрах, t - в секундах), задан в табл. КЗ отдельно для рис. КЗ.О-К3.5 и для рис. К3.6-К3.9, при этом на рис. 6-9 s = AM и отсчитывается по дуге окружности; там же даны размеры b и l. На всех рисунках точка M показана в положении, при котором s = AM > 0 (при s < 0 точка М находится по другую сторону от точки А).

Определить абсолютную скорость и абсолютное ускорение точки М в момент времени t 1 = 1с.

Указания. Задача КЗ - на сложное движение точки. При ее решении движение точки по пластине считать относительным, а вращательное движение самой пластины - переносным и воспользоваться теоремами о сложении скоростей и о сложении ускорений. Прежде чем производить расчеты, следует изобразить точку М на пластине в том положении, в котором нужно определить ее абсолютную скорость (или ускорение), а не в произвольном положении, показанном на рисунках к задаче.

В случаях, относящихся к рис. К3.6-К3.9, при решении задачи не подставлять числового значения R, пока не будут определены положение точки М в момент времени t 1 = 1 с и угол между радиусами СМ и СА в этот момент.

Пример КЗ. Шар радиуса R (рис. КЗ, а) вращается вокруг своего диаметра АВ по закону j = f1 (t) (положительное направление отсчета угла j показано на рис. КЗ, а дуговой стрелкой). По дуге большого круга ("меридиану") ADB движется точка М по закону s = АM= f 2(t); положительное направление отсчета расстояния s от А к D.

 

Дано: R = 0,5 м, j = -2t, s = (pR /6)(7 t -2 t 2)(j -в радианах, s -в метрах, t - в секундах).

Определить: u абс и а абс момент времени t 1 = 1 с. Решение. Рассмотрим движение точки М как сложное, считая ее движение по дуге ADB относительным (АВ - относительная траектория точки), а вращение шара - переносным движением. Тогда абсолютная скорость и абсолютное ускорение точки найдутся по формулам

(1)

где, в свою очередь,

Определим все характеристики относительного и переносного движений.

1. Относительное движение. Это движение происходит по закону

(2)

Сначала установим, где будет находиться точка М на дуге АDВ в момент времени t 1. Полагая в уравнении (2) t = 1 с, получим . Toгда или . Изображаем на рис. КЗ, а точку в положении, определяемом этим углом (точка М 1 ).

Теперь находим числовые значения

где - радиус кривизны относительной траектории, т.е. дуги ADB. Для момента времени t 1 = 1с, учитывая, что R = 0,5 м, получим

(3)

Знаки показывают, что вектор направлен в сторону положительного отсчета расстояния s, а вектор в противоположную сторону; вектор направлен к центру С дуги ADB. Изображаем все эти векторы на рис. КЗ, а. Для наглядности приведен рис. КЗ, б, где дуга ADB совмещена с плоскостью чертежа.

2. Переносное движение. Это движение (вращение) происходит по закону . Найдем угловую скорость w и угловое ускорение Î переносного вращения: (шар вращается равномерно). Таким образом,

(4)

Знак указывает, что направление w противоположно положительному направлению отсчета угла j; отметим это на рис. КЗ, а соответствующей дуговой стрелкой.

Для определения найдем сначала расстояние h точки M 1 от оси вращения: h = R sin 30° = 0,25 м. Тогда в момент времени t 1 = 1 с,


учитывая равенства (4), получим

(5)

Изображаем на рис. КЗ, а вектор с учетом направления w вектор (направлен к оси вращения).

3. Кориолисово ускорение. Так как угол между вектором и осью вращения (вектором ) равен 60°, то численно в момент времени t 1 = 1 с [см. равенства (3) и (4)]

(6)

Направление найдем, спроектировав вектор на плоскость, перпендикулярную оси вращения (проекция направлена так же, как вектор ) повернув затем эту проекцию_в сторону w, т.е. по ходу часовой стрелки, на 90°. Иначе направление можно найти, учтя, что Изображаем вектор на рис. К3, а.





Поделиться с друзьями:


Дата добавления: 2017-03-18; Мы поможем в написании ваших работ!; просмотров: 566 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2256 - | 2185 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.