Рисунок 7.1 - Преобразование соединений элементов
В основе подобных преобразований лежит принцип эквивалентности. Согласно этому принципу ток i и напряжение u в исходной и преобразованной схемах должны остаться неизменными. Для первой схемы = , для второй . Из равенства токов и напряжений для обеих схем имеем:
. (16)
Из этого равенства (16) следуют формулы преобразования параллельного участка в эквивалентный последовательный:
R = G/Y2; X = B/Y2. (17, 18)
Аналогично из равенства = l/ можно получить формулы преобразования последовательного участка в эквивалентный параллельный:
G = R/Z2; B = X/Z2. (19, 20)
Эти преобразования можно положить в основу разложения тока в последовательном участке и напряжения в параллельном на активную и реактивную составляющие.
Символический метод особенно эффективен при анализе сложных разветвленных цепей. Причем поскольку все методы расчета подобных цепей (метод контурных токов, узловых напряжений, наложения и др.) базируются на законах Ома и Кирхгофа, то эти методы могут использоваться и при комплексной форме с заменой соответствующих величин (токов, напряжений, сопротивлений, проводимостей) их комплексными значениями.
Мощность в цепях при гармонических воздействиях
Представим пассивную электрическую цепь, находящуюся под воздействием источника гармонического напряжения, в форме двухполюсника. Под воздействием напряжения u = Umsinwt в цепи будет протекать ток i = Imsin(wt - j). Отдаваемая источником в цепь за период Т средняя мощность:
. (21)
Согласно закону Ома U = IZ, или (так как Z = R/cosj), U = RI/cosj.
Тогда P = I2R = U2G.
Таким образом, средняя за период мощность Р равна мощности, рассеиваемой на активном сопротивлении (проводимости) цепи. В этой связи мощность Р носит название активной и измеряется в Ваттах (Вт).
Кроме активной мощности Р в цепях гармонического тока используют понятие реактивной мощности Q = UIsinj = I2X = U2B, и комплексной мощности = = P + jQ = UIcosj + jsinj = UIejj = Ie-jj = . Модуль комплексной мощности называется полной мощностью:
S = | | = . (22)
Единица измерения реактивной и полной мощности - Вольт х Ампер (В·А). Активная мощность равна реальной части, а реактивная - мнимой части комплексной мощности . А также: cosj = P/S.
Это отношение в энергетике называется коэффициентом мощности (косинусом j ) и является важной характеристикой электрических машин и линий электропередач. Чем выше cosj тем меньше потери энергии в линии и выше степень использования электрических машин и аппаратов. Максимальное значение cosj = 1, при этом P = S; Q = 0, - т. е. цепь носит чисто активный характер и сдвиг фаз между током i и напряжением u равен нулю.
Условие передачи максимальной мощности от генератора в нагрузку можно найти из условия: ,
где - комплексное внутреннее сопротивление источника;
- комплексно-сопряженное сопротивление нагрузки. Это условие следует непосредственно из рассмотрения эквивалентной схемы, приведенной на рисунке 7.2.
Рисунок 7.2 - Передача мощности в нагрузку
Ток в данной цепи достигает максимума при Хг = -Хн и выполнении условия Rг = Rн, что и доказывает равенство . При этом мощность в нагрузке будет определяться уравнением: рнmax = uг2/(4Rг).
По аналогии с треугольниками токов, напряжений, сопротивлений и проводимостей можно ввести треугольники мощностей. Так треугольники мощностей для цепей, носящих индуктивный или ёмкостной характер, приведены на рисунке 7.2.
Рассмотрим условие баланса мощности в цепях при гармоническом воздействии. В силу справедливости первого и второго законов Кирхгофа для комплексных действующих значений тока и напряжения в каждой из ветвей рассматриваемой цепи можно записать теорему Телледжена в комплексной форме:
. (23)
Однако поскольку ЗТК справедлив и по отношению к сопряженным токам то можно записать:
. (24)
Это уравнение отражает баланс комплексной мощности, согласно которому сумма комплексных мощностей, потребляемых всеми ветвями цепи, равна нулю.
Баланс комплексной мощности можно сформулировать и в другой форме: сумма комплексных мощностей, отдаваемых независимыми источниками, равна сумме комплексных мощностей, потребляемых остальными ветвями электрической цепи:
. (25)
Из условия баланса комплексной мощности следуют условия баланса активных и реактивных мощностей:
; . (26)
Условие баланса активных мощностей непосредственно вытекает из закона сохранения энергии.
Последовательный колебательный контур и его свойства