Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Перпендикулярности плоскостей.

Прямая и плоскость в пространстве. Уравнения плоскости и прямой в пространстве. Угол между плоскостями. Угол между прямой и плоскостью.

Отметим, что многие утверждения и формулы, касающиеся плоскости в пространстве, доказываются и выводятся так же, как при изучении прямой на плоскости, поэтому в этих случаях будут даваться ссылки на предыдущую лекцию.

 

Плоскость в пространстве.

 

Получим сначала уравнение плоскости, проходящей через точку М00 0 ,z0) перпендикулярно вектору n = { A,B,C },называемому нормалью к плоскости. Для любой точки плоскости М(х, у, z) вектор М0М = { x - x0 , y - y0, z - z0) ортогонален вектору n, следовательно, их скалярное произведение равно нулю:

A(x - x0) + B(y - y0) + C(z - z0) = 0. (8.1)

Получено уравнение, которому удовлетворяет любая точка заданной плоскости – уравнение плоскости, проходящей через данную точку перпендикулярно данному вектору.

После приведения подобных можно записать уравнение (8.1) в виде:

Ax + By + Cz + D = 0, (8.2)

где D = -Ax0 - By0 - Cz0. Это линейное уравнение относительно трех переменных называют общим уравнением плоскости.

 

Неполные уравнения плоскости.

Если хотя бы одно из чисел А, В, С, D равно нулю, уравнение (8.2) называют неполным.

Рассмотрим возможные виды неполных уравнений:

1) D = 0 – плоскость Ax + By + Cz = 0 проходит через начало координат.

2) А = 0 – n = {0, B,C } Ox, следовательно, плоскость By + Cz + D = 0 параллельна оси Ох.

3) В = 0 – плоскость Ax + Cz +D = 0 параллельна оси Оу.

4) С = 0 – плоскость Ax + By + D = 0 параллельна оси Оz.

5) А = В = 0 – плоскость Cz + D = 0 параллельна координатной плоскости Оху (так как она параллельна осям Ох и Оу).

6) А = С = 0 – плоскость Ву + D = 0 параллельна координатной плоскости Охz.

7) B = C = 0 – плоскость Ax + D = 0 параллельна координатной плоскости Оуz.

8) А = D = 0 – плоскость By + Cz = 0 проходит через ось Ох.

9) B = D = 0 – плоскость Ах + Сz = 0 проходит через ось Оу.

10) C = D = 0 - плоскость Ax + By = 0 проходит через ось Oz.

11) A = B = D = 0 – уравнение Сz = 0 задает координатную плоскость Оху.

12) A = C = D = 0 – получаем Ву = 0 – уравнение координатной плоскости Охz.

13) B = C = D = 0 – плоскость Ах = 0 является координатной плоскостью Оуz.

Если же общее уравнение плоскости является полным (то есть ни один из коэффициентов не равен нулю), его можно привести к виду:

(8.3)

называемому уравнением плоскости в отрезках. Способ преобразования показан в лекции 7. Параметры а, b и с равны величинам отрезков, отсекаемых плоскостью на координатных осях.

 

Угол между плоскостями. Условия параллельности и

перпендикулярности плоскостей.

Если две плоскости (α1 и α2) заданы общими уравнениями вида:

A1x+B1y+C1z+D1 =0 и A2x+B2y+C2z+D2 =0,

то очевидно, что угол между ними равен углу между их нормалями, то есть между векторами n 1={ A1,B1,C1) и n 2={ A2,B2,C2). Из формулы (5.6) получаем, что косинус угла между плоскостями α1 и α2 равен

(8.4)

Условие параллельности плоскостей заключается в параллельности нормалей:

(8.5)

а условие перпендикулярности плоскостей – в перпендикулярности нормалей или равенстве нулю их скалярного произведения:

A1A2 + B1B2 + C1C2 = 0. (8.6)

 

Выведем еще несколько уравнений плоскости. Пусть плоскость проходит через точки М 1(х1, у1, z1), M 2(x2, y2, z2) и M 3(x3, y3, z3), не лежащие на одной прямой. Тогда векторы М1М 2 ={ x2 - x1, y2 - y1, z2 - z1 }, М1М 3 ={ x3 - x1, y3 - y1, z3 - z1М1М ={ x - x1, y - y1, z - z1 }, где М(x, y, z) произвольная точка плоскости, компланарны. Следовательно, их смешанное произведение равно нулю. Используя координатную запись смешанного произведения, получаем:

(8.7)

Это уравнение, которому удовлетворяют координаты х, у, z любой точки, лежащей на искомой плоскости, является уравнением плоскости, проходящей через три данные точки.

Способом, аналогичным изложенному в лекции 7, можно получить нормальное уравнение плоскости:

(8.8)

где р – длина перпендикуляра ОР, опущенного из начала координат на плоскость, а cosα, cosβ, cosγ – направляющие косинусы нормали к этой плоскости. При этом расстояние от любой точки А пространства до данной плоскости определяется по формуле:

, (8.9)

где x0,y0,z0 – координаты рассматриваемой точки А. Подмодульное выражение в формуле (8.9) называется отклонением точки А от плоскости и принимает положительные значения, если А и начало координат лежат по разные стороны от плоскости, и отрицательные, если эти две точки лежат по одну сторону от плоскости. Нормальное уравнение получается из общего уравнения плоскости в результате деления его на нормирующий множитель знак которого противоположен знаку D.

Доказательства всех сформулированных утверждений полностью аналогичны исследованию нормального уравнения прямой на плоскости, рассмотренного в лекции 7.

 

Прямая в пространстве.

 

Замечание. Прямую в пространстве невозможно задать одним уравнением. Для этого требуется система двух или более уравнений.

Первая возможность составить уравнения прямой в пространстве – представить эту прямую как пересечение двух непараллельных плоскостей, заданных уравнениями

A1x+B1y+C1z+D1= 0 и A2x+B2y+C2z+D2 =0, где коэффициенты A1,B1,C1 и A2,B2,C2 не пропорциональны:

 

A1x+B1y+C1z+D1 =0 (8.10)

A2x+B2y+C2z+D2 =0.

Однако при решении многих задач удобнее пользоваться другими уравнениями прямой, содержащими в явной форме некоторые ее геометрические характеристики.

Составим уравнения прямой, проходящей через точку М0(x0,y0,z0) параллельно вектору a ={l,m,n}.

Определение 8.1. Любой ненулевой вектор, параллельный данной прямой, называется ее направляющим вектором.

Для любой точки М(x,y,z), лежащей на данной прямой, вектор М0М = { x - x0,y - y0,z - z0) коллинеарен направляющему вектору а. Поэтому имеют место равенства:

(8.11)

называемые каноническими уравнениями прямой в пространстве.

В частности, если требуется получить уравнения прямой, проходящей через две точки:

М11, у1, z1) и M2(x2, y2, z2), направляющим вектором такой прямой можно считать вектор М1М 2 = { x2 – x1, y2 - y1, z2 - z1 }, и уравнения (8.11) принимают вид:

- (8.12)

- уравнения прямой, проходящей через две данные точки.

Если же принять каждую из равных дробей в уравнениях (8.11) за некоторый параметр t, можно получить так называемые параметрические уравнения прямой:

. (8.13)

Для того, чтобы перейти от уравнений (8.10) к каноническим или параметрическим уравнениям прямой, требуется найти направляющий вектор этой прямой и координаты любой точки, принадлежащей ей. Направляющий вектор прямой ортогонален нормалям к обеим плоскостям, следовательно, он коллинеарен их векторному произведению. Поэтому в качестве направляющего вектора можно выбрать [ n1n2 ] или любой вектор с пропорциональными координатами. Чтобы найти точку, лежащую на данной прямой, можно задать одну ее координату произвольно, а две остальные найти из уравнений (8.10), выбрав их так, чтобы определитель из их коэффициентов не равнялся нулю.

Пример. Составим канонические уравнения прямой

.

Найдем [ n1n2 ]. n 1 = {2,1,-3}, n 2 = {1,-5,4}. Тогда [ n1n 2 ] = {-11,-11,-11}. Следовательно, направляющим вектором прямой можно считать вектор {1,1,1}.

Будем искать точку на прямой с координатой z0=0. Для координат х 0 и у0 получим систему уравнений , откуда х 0=2, у 0=1. Теперь можно составить канонические уравнения прямой:

.

Параметрические уравнения той же прямой имеют вид:

.

Замечание. Если какая-либо из координат направляющего вектора равна 0, то предполагается, что для любой точки прямой числитель соответствующей дроби в канонических уравнениях тоже равен 0.

 



<== предыдущая лекция | следующая лекция ==>
Брак. Условия заключения и расторжения брака. | Представление списковых структур в памяти.
Поделиться с друзьями:


Дата добавления: 2017-03-18; Мы поможем в написании ваших работ!; просмотров: 872 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Слабые люди всю жизнь стараются быть не хуже других. Сильным во что бы то ни стало нужно стать лучше всех. © Борис Акунин
==> читать все изречения...

2232 - | 2154 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.