Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Лекция 10. Электродинамическое взаимодействие проводников с токами в схемах энергоустановок.




 

При КЗ проводники и аппараты подвергаются воздействию значительных электродинамических сил, которые могут достигать 4000 – 16000 Н. Эти силы могут вызвать остаточную деформацию жестких проводников, схлёстывание гибких проводников, вызвать отказ во включении выключателей или самопроизвольное отключение разъединителей. Чтобы этого не случилось, все системы токоведущих частей и электрические аппараты проверяются на электродинамическую стойкость при проектировании первичной электрической схемы.

Из физики известно, что на элемент проводника dl с током i в магнитном поле с индукцией B действует сила dF=iBdlsinα. Магнитное поле может быть создано другим проводником с током, тогда говорят о взаимодействии двух проводников с токами.

Магнитную индукцию от проводника с током можно определить с помощью закона Био-Савара, но иногда бывает удобнее определить В с помощью закона полного тока: .

Силы взаимодействия двух проводников. Часто взаимодействие между проводниками в схемах энергоустановок сводится к взаимодействию двух параллельных проводников с токами. Рассмотрим этот случай подробнее (Рис.10.1). Пусть проводники длиной l находятся на расстоянии а. Ток в одном проводнике i1, в другом i2. Будем считать, что l»а (это часто имеет место на практике), тогда для вычисления индукции В1 от первого проводника в районе второго воспользуемся законом полного тока.

 

Рис. 10.1 Взаимодействие двух проводников с токами и определение направления силы с помощью правила левой руки

 

В качестве контура интегрирования L выберем окружность с радиусом а. Тогда получим , т.к. в силу симметрии В1=const на контуре L, то можно записать . Из последнего выражения можно записать для индукции от первого проводника в районе второго: . Зная индукцию В1, можно определить силу dF2 действующую на элемент dl2 второго проводника с током i2.

.

В нашем случае sin α=1, т.к. α=π/2, поэтому сила, действующая на весь второй проводник:

.

В практических расчетах динамической стойкости пользуются понятием погонной силы fпог=F/l [Н/м]. Для нашего случая с учетом того, что μ0=4π10-7Гн/м, выражение для погонной силы примет вид:

.

Т.е. погонная сила пропорциональна произведению токов во взаимодействующих проводниках и обратнопропорциональна расстоянию между ними.

В предыдущих формулах предполагалось, что взаимодействующие проводники бесконечно тонкие. Для проводников конечного сечения:

, где кф – коэффициент формы проводника, значения которого приводится в справочниках.

Силы в трехфазной системе проводников. Рассмотрим наиболее частый случай, когда проводники фаз располагаются в одной плоскости (Рис.10.2).

 

Рис. 10.2 Силы в трёхфазной системе токов.

 

В фазных проводниках протекают токи, которые представляют собой синусоиды с амплитудами Im:

.

Сила, действующая на проводник средней фазы, больше сил действующих на крайние фазы, поэтому рассмотрим силу, действующую на среднюю фазу. Эта сила будет складываться из двух сил – силы действующей на фазу b со стороны фазы a и силы действующей на фазу b со стороны фазы c:

.

Окончательно, с учетом формулы двойного угла и коэффициента кф, для погонной силы, действующей на среднюю фазу, можно записать:

. Таким образом, сила изменяется с частотой в два раза большей частоты сети. Максимальное значение погонной силы будет равно:

.

В переходном процессе КЗ наибольшее мгновенное значение тока равно его ударному значению iу, поэтому приближенно можно записать:

.

Наибольшие усилия между проводниками возникают при трехфазном КЗ, поэтому этот вид КЗ является расчетным при проверке проводников и аппаратов на электродинамическую стойкость.

Электродинамическая стойкость жестких проводников. Электродинамическая стойкость жестких проводников будет обеспечена, если будет выполнено условие:

σрасч≤σдоп.

Здесь σрасч – расчетное механическое напряжение в материале проводника;

σдоп – допустимое механическое напряжение в материале проводника (согласно ПУЭ σдоп=0,7 σразр).

В качестве примера рассмотрим расчет электродинамической стойкости проводников из жестких однополосных шин (Рис.10.3). Жесткие шины, как правило, жестко крепятся только к одному изолятору в пролёте. На остальных изоляторах шины крепятся с помощью накладок, обеспечивающих возможность продольного перемещения шин. Это необходимо для того, чтобы не развивались механические напряжения в шинах и изоляторах при изменении температуры.

Расчет проводится для фазы b, причем т.к. в практических конструкциях a»b+h, то kф=1.

Равномерно распределенная сила создаёт изгибающий момент , где Коп – коэффициент, зависящий от способа закрепления шин на опорных изоляторах. На основе практики в общем случае принимают Коп=10.

Рис. 10.3 Динамическая стойкость жестких шин: а – расстояние между фазами; l – расстояние между изоляторами; b,h – размеры сечения проводника

 

Воздействие момента вызывает в материале шин механическое напряжение , где W – момент сопротивления шины относительно оси, перпендикулярной действию силы [м3]. W зависит от формы и соотношения размеров в сечении проводника. В нашем случае , .

Т.к. , то, изменяя a и l, добиваются выполнения условия σрасч≤σдоп. Увеличение а приводит к возрастанию габаритов установки, поэтому чаще прибегают к уменьшению l.

Из условия σрасчдоп можно определить пролет, который будет удовлетворять условию электродинамической стойкости для жесткой однополосной шины:

. (1)

Полученная формула справедлива при статическом действии силы. Но, как отмечалось выше, электродинамическая сила является переменной во времени. Это может привести к механическому резонансу в системе жесткие шины-изоляторы, когда собственные частоты системы будут близки к 50 и 100 Гц. Если же собственные частоты системы будут меньше 30 или больше 200 Гц, то механический резонанс не возникает и проверка шин на электродинамическую стойкость производится как в статическом случае.

Частота собственных колебаний можно вычислить на основе следующих выражений:

- для алюминиевых шин

- для медных шин , где l – расстояние между изоляторами, м; J – момент инерции поперечного сечения шины относительно оси, перпендикулярной направлению изгибающей силы, см4; S – площадь сечения шины, см2.

Изменяя l, добиваются того, чтобы механический резонанс был исключен, и одновременно выполнялось условие (1). Если только вариация l не позволяет выполнить требуемые условия, то изменяют еще и форму сечения шины.

Выбор изоляторов. Т.к. шины крепятся на опорных изоляторах, то необходима проверка их электродинамической стойкости (Рис.10.4). В общем случае выбор опорных изоляторов производится по следующим условиям:

· по номинальному напряжению Uуст≤Uном;

· по электродинамической стойкости Fрасч≤Fдоп, где Fрасч – сила, действующая на изолятор; Fдоп – допустимая нагрузка на головку изолятора (Fдоп=0,6Fразр, Fразр разрушающая нагрузка на изгиб).

При горизонтальном или вертикальном расположении изоляторов расчетная сила Fрасч=fbmlkh, где kh – поправочный коэффициент на высоту шины , , где Низ – высота изолятора.

Рис. 10.4 Динамическая стойкость опорного изолятора.

 

Электродинамическая стойкость гибких проводников. Электродинамическая стойкость гибких проводников подвешенных на подвесных изоляторах сводится к проверке на схлёстывание, при котором может произойти недопустимое сближение соседних фаз и пробой между ними.

Наибольшее сближение наблюдается при двухфазных КЗ (Рис.10.5), когда провода сначала отбрасываются в противоположные стороны, а затем после отключения тока КЗ движутся навстречу друг другу. Сближение будет тем больше, чем меньше расстояние между фазами, больше стрела провеса, больше величина и время протекания тока КЗ.

Рис. 10.5 Динамическая стойкость гибких проводников.

 

Условием динамической стойкости будет выполнение соотношения b≤bдоп, (2)

где b – отклонение от нормального положения провода, bдоп – допустимое отклонение.

Отклонение определяется при известной стреле провеса h, массе погонного метра провода m, расстояния между проводами D.

Допустимое отклонение определяется по наименьшему допустимому расстоянию между соседними фазами в момент их наибольшего сближения адоп, диаметру провода d и расстоянию между фазами D. .

Если условие (2) не выполняется, то увеличивают расстояние между фазами D или уменьшают стрелу провеса h.

Электродинамическая стойкость аппаратов будет обеспечена, если будет выполняться условие , где iдин ток динамической стойкости аппарата, а iу(3) ударный ток при трехфазном КЗ в цепи аппарата.

 

Лекция 11. ВЫБОР ПРОВОДНИКОВ В СХЕМАХ ЭНЕРГОУСТАНОВОК.

По механическим свойствам токоведущие части делятся на гибкие (провода) и жесткие (шины). Жесткие применяются преимущественно при напряжении до 35 кВ, а гибкие при 35 кВ и выше.

По назначению в схемах энергоустановок токоведущие части делятся на сборные шины и ошиновки. Ошиновка – токоведущая часть одной цепи (генератор, трансформатор, линия и т.д.). Сборная шина – токоведущая часть, к которой подключены все или часть цепей данного распределительного устройства. Ошиновки и сборные шины могут быть как гибкими так и жесткими.

Токоведущие части выбираются по условиям длительного режима, а проверяются в условиях КЗ.





Поделиться с друзьями:


Дата добавления: 2017-03-12; Мы поможем в написании ваших работ!; просмотров: 1098 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2915 - | 2665 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.