Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Характерные значения удельной активности продуктов деления в теплоносителе АЭС с РБМК




 

Нуклид 131I 137Cs 141Ce 103Ru 106Ru 134Cs
Удельная активность, в Ки/кг 4. 10-7 5.10-9 2. 10-9 2.10-9 2. 10-9 5.10-9

Другим источником образования радиоактивных веществ на АЭС, кроме ядерной реакции
деления, служит процесс активации. Теплоноситель и переносимые им примеси, в первую
очередь продукты коррозии металла трубопроводов контура, попадая в активную зону,
подвергаются мощному облучению потоком нейтронов и становятся радиоактивными. Так,
если теплоноситель вода, то при захвате нейтрона с испусканием протона ядром атома 16O
образуется радиоактивный изотоп 16N. Кроме того, в воде всегда присутствует воздух,
а. следовательно, газ аргон, который, активируясь, образует радиоактивный изотоп 41Ar.
В воде обычно всегда имеются продукты коррозии конструкционных элементов реактора и
трубопроводов контура. В результате их активации образуются радионуклиды 60Со,

59Fe, 56Mn и др.

Не все радионуклиды имеют одинаковое значение с точки зрения радиационной
безопасности и защиты окружающей среды. Например, изотоп 16N имеет очень малый период
полураспада (Т1/2 = 7,11 сек), поэтому он просто не успевает выйти за пределы АЭС (являясь,
мощным γ-излучателем, он в основном обуславливает необходимость биологической защиты
реактора и трубопроводов 1 контура при работе на мощности). Основное значение, с точки
зрения радиационной безопасности и охраны окружающей среды, имеют ряд газообразных


радионуклидов, таких как 85Kr, 41Ar и др., а также радионуклиды с большим периодом
полураспада и большой биологической активностью, такие как 137Cs, 90Sr.

Следующим защитным барьером является полностью замкнутая система трубопроводов
первого контура, не допускающая поступление радионуклидов в помещения АЭС.
Накоплению радиоактивных продуктов в теплоносителе препятствует система постоянной
очистки, так называемая система байпасной очистки 1 контура.

В результате нарушения герметичности задвижек или других устройств первого контура,
радиоактивные вещества с протечками могут попадать в помещения АЭС. И затем, за счет
выхода газообразных радионуклидов, загрязнять воздух и образовывать загрязненные
радионуклидами трапные воды. Однако и в этом случае, их выходу во внешнюю среду

препятствует следующий защитный барьер.

Все газообразные радионуклиды собираются системами вентиляции станции и
направляются на специальные установки очистки, и только после очистки до допустимых
уровней содержания радионуклидов они могут поступать во внешнюю среду.

Загрязненные трапные воды также собираются, очищаются и возвращаются в
технологический цикл, или очищенные до нормативных безопасных уровней сбрасываются
во внешнюю среду.

РАДИОАКТИВНЫЕ ОТХОДЫ АЭС

Радиоактивные отходы (РАО) — неиспользуемые жидкие и твердые вещества или
предметы, образующиеся в результате деятельности учреждения, общая активность, удельная
активность и радиоактивное загрязнение поверхностей которых превышает уровни,
установленные действующими нормативными документами.

Любая деятельность в сфере обращения с радиоактивными отходами на Украине
регулируется Законом Украины "Об обращении с радиоактивными отходами". В соответствии
с данным Законом обращение с радиоактивными отходами — деятельность, связанная со
сбором, переработкой, транспортировкой, хранением и захоронением радиоактивных отходов.

Сбор радиоактивных отходов осуществляется силами и средствами учреждения, в
котором образуются радиоактивные отходы, отдельно от обычного мусора и строго раздельно
с учетом:

• физического состояния (твердые, жидкие);

• происхождения (органические, неорганические, биологические);

• периода полураспада радионуклидов, находящихся в отходах (до 15 суток,
более 15 суток);

• взрыво-и огнеопасности (опасные, безопасные).

Система обращения с радиоактивными отходами должна включать в себя сбор отходов,
временное их хранение, переработку, удаление и захоронение. Должны назначаться лица,
ответственные за сбор и передачу на захоронение радиоактивных отходов в учреждении,
которые обязаны вести учет радиоактивных отходов. На каждую партию радиоактивных
отходов, передаваемых на захоронение, необходимо оформлять паспорт.

Контейнеры для радиоактивных отходов должны быть типовыми. Размер и конструкция
контейнеров определяется типом и количеством радиоактивных отходов, видом и энергией
излучений радионуклидов. Внутренние поверхности контейнеров для многократного
использования должны плавно сопрягаться, быть гладкими, выполненными из


слабосорбирующего материала, допускающего обработку кислотами и специальными
растворами, и иметь достаточную механическую прочность. Контейнеры должны
закрываться крышками. Конструкция контейнеров должна быть такой, чтобы была возможна
их механизированная погрузка и выгрузка. Мощность дозы излучения на расстоянии 1 метр
от сборника с радиоактивными отходами допускается не более 10 мбэр/ч.

Транспортировка, переработка и захоронение радиоактивных отходов производится
пунктами захоронения радиоактивных отходов (ПЗРО) или специализированными
комбинатами.

Хранение радиоактивных отходов — размещение РАО в объекте, в котором
обеспечивается изоляция от окружающей природной среды, физическая защита и
радиационный мониторинг, с возможностью последующего извлечения, переработки,
транспортировки и захоронения. На АЭС хранение жидких и твердых РАО осуществляется
соответственно в хранилищах жидких отходов (КЖО) и хранилищах твердых отходов (XTO).
Хранение РАО может осуществляться как по месту образования РАО, так и по месту
переработки и захоронения РАО.

Захоронение радиоактивных отходов — размещение РАО в объекте, предназначенном
для обращения с РАО без намерения их использования.

Захоронение РАО во временных ПЗРО, как правило, запрещается. Но в отдельных
случаях допускается захоронение РАО во временных могильниках. Таким примером может
быть захоронение РАО в процессе ликвидации последствий аварии на Чернобыльской АЭС
в 1986 году. Извлечение РАО из временных могильников зоны отчуждения ЧАЭС, их
переработка и захоронение являются актуальной проблемой до настоящего времени.

Степень радиационной опасности при сборе, транспортировке, переработке и захоронении
радиоактивных отходов зависит от следующих основных факторов:

• величины активности;

• вида и энергии излучения;

• степени токсичности радиоактивных веществ, со держащихся в отходах;

• периода полураспада радионуклидов;

• физического состояния отходов (жидкие, твердые);

• вида и состояния тары.

TPO и ЖРО, содержащие короткоживущие нуклиды с периодом полураспада
до 15 суток, выдерживают в течение времени, обеспечивающего снижение активности до
безопасных уровней, а затем удаляют как обычный мусор на организованные свалки,
а ЖРО — в хозяйственно-бытовую канализацию при обязательном радиационном контроле.

Отработанное ядерное топливо АЭС, которое не подлежит переработке, после
соответствующей выдержки хранится в специальных хранилищах отработанного ядерного
топлива (ХОЯТ), оборудованных техническими средствами извлечения топлива из этого
хранилища.

На протяжении всего времени хранения или захоронения РАО регулярно осуществляется
контроль за их состоянием, радиационной обстановкой в хранилищах и окружающей
природной среде.

В необходимых случаях для учреждений устанавливаются допустимые сбросы
радиоактивных веществ в поверхностные водоемы.

В хозяйственно-бытовую канализацию допускается сброс радиоактивных сточных вод с


 

концентрацией, превышающей ДКВingest для воды не более чемв 10 раз, если обеспечивается
их десятикратное разбавление нерадиоактивными сточными водами в коллекторе данного
учреждения, а суммарный сброс радиоактивных веществ в водоем не превысит установленного
допустимого уровня. При малых количествах жидких радиоактивных отходов (менее 200 л),
а также при невозможности их разбавления, отходы должны собираться в специальные
емкости для последующего удаления и захоронения.

При удалении сточных вод непосредственно из учреждений или общегородской
канализации в открытые водоемы концентрация радиоактивных веществ в сточных
водах у места спуска их в водоем не должна превышать допустимой концентрации ДКВingest
для воды.

Запрещается удаление жидких радиоактивных отходов в поглощающие ямы, колодцы,
скважины, на поля орошения, поля фильтрации, в системы подземного орошения.

Газообразные радиоактивные выбросы

Наиболее значительную роль в формировании радиационной обстановки в районе
размещения АЭС играют инертные радиоактивные газы (ИРГ) и изотопы йода. В целом, в
состав газообразных радионуклидов осколочного происхождения входят: 18 изотопов
криптона, 15 изотопов ксенона и 20 изотопов йода. С точки зрения радиационной опасности
для населения, наибольшее значение имеют радионуклиды криптона, ксенона и йода. Кроме
этих нуклидов весьма значительную роль играют аэрозольные выбросы изотопов
стронция - 89, 90 и цезия - 134, 137, которые являются продуктами распада газообразных
нуклидов.

Механизм выхода летучих радиоактивных веществ в окружающую среду из
технологического цикла АЭС с реакторами ВВЭР и РБМК имеет ряд различий. Основным
путем поступления газо-аэрозольных выбросов в окружающую среду от реакторов ВВЭР
являются дегазация и испарение воды теплоносителя первого контура. Вода насыщается
радиоактивными веществами в результате активации (3H, 14C, 41Ar) и непосредственного ее
контакта с негерметичными оболочками ТВЭЛов (изотопы I, С, Kr, Xe, Sr, Ce, Ru).
Непосредственным источником поступления в атмосферный воздух летучих радиоактивных
веществ (в особенности 3H) от реактора ВВЭР является вентиляционная система герметичных
помещений первого контура и самого реактора.

Нуклидный состав газообразных выбросов АЭС с РБМК, в основном определяется газа-
ми, поступающими с эжекторов турбины — это радионуклиды продуктов деления (радио-
нуклиды криптона и ксенона). Кроме этого, в состав газообразного выброса входит газ
активационного происхождения — Ar, образующийся в газовом контуре и циркуляцион-
ных трубопроводах и баках контура охлаждения СУЗ. Активность и нуклидный состав крип-
тона и ксенона зависит, вообще говоря, от радиационного состояния активной зоны реактора,
а активность Ar — от мощности реактора. При длительной работе реактора на мощности
радиационное состояние его активной зоны стабилизируется и при реализации оптимального
управления радиационным состоянием поддерживается практически на одном уровне. Это
значит, что нуклидный состав газообразных продуктов деления также стабилизируется и
мало меняется в условиях нормальной эксплуатации реактора.

Радионуклиды йода присутствуют в выбросе в трех физико-химических формах:

• в аэрозольной, т.е. это радионуклиды, сорбированные на аэрозольных частицах;

• в газообразной, где основную массу составляет молекулярный йод (I2);


• в виде органического соединения — йодистого метила (CH3I). трудно сорбируемого и
обладающего высокой проникающей способностью через фильтры.

Йод, как продукт деления, образуется в атомарном виде, но в теплоносителе КМПЦ уже
присутствует во всех формах. В выбросе нормально функционирующих АЭС соотношения
между формами йода следующие:

• аэрозольная 1 — 2%;

• молекулярная 40 — 50%;

• органическая 50 — 60%.

Изотопный состав йода представлен 131I и 133I, причем доля их в выбросе примерно оди-
накова (см. табл. 11.3).

Таблица 11.3.





Поделиться с друзьями:


Дата добавления: 2017-03-12; Мы поможем в написании ваших работ!; просмотров: 671 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Настоящая ответственность бывает только личной. © Фазиль Искандер
==> читать все изречения...

2345 - | 2069 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.