Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


При составлении уравнений по методу узловых напряжений предварительно записывать уравнения по первому закону Кирхгофа не нужно!

Анализ резистивных цепей постоянного тока

 

Для схемы, соответствующей номеру варианта, выполнить:

 

1. Записать уравнения по законам Кирхгофа. Решив полученную систему уравнений, определить токи и напряжения ветвей.

2. Составить узловые уравнения цепи в матричной форме. Решив составленные уравнения, рассчитать токи во всех ветвях исходной цепи.

3. Составить расширенные узловые уравнения.

4. Результаты расчетов свести в таблицу.

5. Рассчитать ток в ветви с резистором методом эквивалентного генератора.

6. Определить, при каком сопротивлении резистора в нем выделяется максимальная мощность.

7. Построить графики зависимостей тока, напряжения и мощности, выделяемой в резисторе при изменении сопротивления от до .

 

Примечание: коэффициент усиления управляемого источника принять равным последней цифре номера зачетной книжки. Цифре 0 соответствует . Параметр источника тока, управляемого током (ИТУН) ( – последняя цифра номера зачетной книжки).

 

Таблица 1

Вар. Рис. R1 R2 R3 R4 R5 R6 Rk E 1 E 2 E 3 J 1 J 2 J 3
Ом В А
  1.2                 0,5 0,8
  1.15 19,5 7,5 13,5 10,5           0,8
  1.1 19,5 7,5     16,5 22,5       0,8
  1.11       52,5           0.5
  1.17     7,5         16,5 52,5 0,5
  1.3   19,5 13,5   7,5     16,2   0,4  
  1.7           67,5   10,2 0,04  
  1.2   7,5     10,5          
  1.8 82,5             25,5 22,5 0,1
  1.1                   0.1
  1.14                   0,5
  1.18               22,5 0,3 0,4
  1.12 22,5     1,35   10,5   0,2 0,3
  1.14 13,5                  
  1.6 7,5     10,5   22,5   37,5 0,5
  1.19         22,5          
Продолжение Таблицы 1
  1.2                   0,5
  1.15                   0,4
  1.1 6,5 2,5     5,5 7,5       0,4
  1.16         6,5     7,5   0,4
  1.11       17,5           0.4
  1.2       7,5 10,5       0,5 0,5
  1.15     26,25              
  1.1                    
  1.17     2,5         8,2 17,5 0,2
  1.3   6,5 4,5   2,5     6,7   0,2
  1.7           22,5   4,7 0,02 0,2
  1.20   2,5     3,5         0,15
  1.8 27,5             6,5 7,5 0,15
  1.10               8,1   0,08
  1.9 3,5     4,5 7,5         0,5
  1.18               7,5 0,2 0,5
  1.4   52,5       22,5     0,4 0,3
  1.13   10,5       8,25       0,4
  1.5   16,5 7,5   10,5     25,5    
  1.12 7,5     4,5   3,5   0,4 0,2
  1.9 10,5     13,5 22,5          
  1.6 2,5     3,5   7,5   12,5 0,3
  1.19 2,5 3,5     7,5         0,2
  1.4   17,5       7,5   6,5 0,2 0,4
  1.13   3,5       2,75       0,4
  1.5   7,5     3,5     10,5    
  1.16                   0,5
  1.11                   0.8
  1.17                    
  1.3                   0,5
  1.7                 0,5 0,2
  1.20                 0,5  
  1.8                   0,04
  1.14                   0,25
  1.10                   0,05
  1.9                    
  1.18                   0,5
  1.12               0,5 0,5
  1.4                 0,5 0,1
  1.13                 0,5 1,5
  1.5                 16,6 0,2
  1.20   12,5     17,5         0,5
Окончание Таблицы 1
  1.6                 0,5
  1.19                    
  1.15 32,5 12,5 22,5 17,5           0,4
  1.1 32,5 12,5     27,5 37,5       0,4
  1.16         32,5     37,5   0,4
  1.11                   0,5
  1.17     12,5           87,5 0,4
  1.3   32,5 22,5   12,5         0,4
  1.7                 0,04 0,4
  1.2                   0,5
  1.8               34,5 37,5 0,14
  1.10                   0,14
  1.9 17,5     22,5 37,5         0,8
  1.18               32,5 0,25 0,8
  1.12 37,5     22,5   17,5   0,2 0,25
  1.4   87,5       37,5     0,4 0,8
  1.13   17,5       13,75       0,25
  1.5   27,5 12,5   17,5     32,5    
  1.14 22,5                 0,8
  1.6 12,5     17,5   37,5   62,5 0,1
  1.19 12,5 17,5     37,5         0,6
  1.2       37,5 52,5       0,6 0,6
  1.15                    
  1.1                    
  1.16                 0,6  
  1.11                   0.8
  1.17                    
  1.3                 8,2 0,2
  1.7                 0,2 0,3
  1.20                 0,6  
  1.8                   0,05
  1.10                   0,1
  1.9                   0,5
  1.18                 0,6 0,25
  1.12               0,2 0,5
  1.4                 0,5 0,2
  1.13           5,5     0,25  
  1.5                 4,5 0,5
  1.14                   0,5
  1.6                      
  1.19                  
  1.16         19,5     22,5   0,5

 


    Рис. 1.1 Рис. 1.2
  Рис. 1.3       Рис. 1.4
    Рис. 1.5   Рис. 1.6
Рис. 1.7 Рис. 1.8
  Рис. 1.9       Рис. 1.10
  Рис. 1.11     Рис. 1.12
Рис. 1.13     Рис. 1.14
      Рис. 1.15   Рис. 1.16
Рис. 1.17         Рис. 1.18
  Рис. 1.19   Рис. 1.20

 

Рекомендации по выполнению расчетного задания

 

1. Последовательное соединение резистора и источника напряжения следует рассматривать как одну ветвь.

2. Схемы для всех вариантов имеют примерно одинаковую сложность. Для всех схем достаточно составить три уравнения по первому закону Кирхгофа и три – по второму.

3. п. 3 расчетного задания (составление расширенных узловых уравнений) студентам ЗФ выполнять не нужно.

4. При составлении уравнений по методу узловых напряжений источники напряжения следует преобразовать в эквивалентные источники тока.

5. При выполнении п. 5 (расчет методом эквивалентного генератора) следует помнить, что в цепи с управляемыми источниками входное сопротивление можно найти только как отношение напряжения холостого хода к току короткого замыкания. Напряжение холостого хода можно найти из системы узловых уравнений, полагая проводимость первого резистора равной нулю: . Ток короткого замыкания легко найти, решив систему уравнений по законам Кирхгофа (п. 1 расчетного задания). В этой системе следует принять . В этом случае ток короткого замыкания .

 

Пример выполнения п. 1 и 2 расчетного задания № 1

 

1. Записать систему уравнений по законам Кирхгофа для цепи, показанной на рис. 1.

 

R
 
R
 
R
 
J
 
 
 
 
 
R
 
R
 
E
 
E
 
U
 
 
 
 
S
U
 
 

Рис. 1

 

1.1. Произвольно выбираем направление токов в ветвях исходной цепи.

Запишем уравнения по первому закону Кирхгофа для узлов 1, 2, 3.

Токи, направленные от узла, записываем со знаком «+». Токи, направленные к узлу, записываем со знаком «-».

 

Для узла 1:

Для узла 2:

Для узла 3:

.

 

Учитываем, что (напряжение на четвёртом резисторе определяем по закону Ома: ).

В качестве контуров удобно выбирать внутренние ячейки. Направление обхода контуров выберем совпадающим с направлением часовой стрелки.

Уравнения по второму закону Кирхгофа:

 

Контур 1:

 

 

Контур 2:

 

 

Таким образом, получаем следующую систему уравнений:

 

.

 

В матричной форме:

 

.

 

Для решения уравнений необходимо использовать математические пакеты (MathCAD или MatLab). Решая систему уравнений, получим вектор токов ветвей. Напряжения ветвей найдем с помощью закона Ома: .

2. Записать систему уравнений по методу узловых напряжений для схемы, показанной на рис. 1.

Решение. Преобразуем цепь на рис. 1 к виду, удобному для анализа методом узловых напряжений. Последовательную ветвь источник напряжения - резистор преобразуем в параллельную ветвь с источником тока (рис. 2). Источник тока, управляемый напряжением, не требует отдельного преобразования.

 

Рис. 2

 

Выберем в качестве базисного узел 0.

Относительно базисного узла определяем направление узловых напряжений , , . Эти напряжения в узлах цепи, отсчитанные относительно базисного узла, называют узловыми напряжениями.

При составлении уравнений по методу узловых напряжений предварительно записывать уравнения по первому закону Кирхгофа не нужно!

Алгоритм формирования узловых уравнений рассмотрен в п. 3.2 учебного пособия. Последовательно просматриваем ветви схемы. Если k-я ветвь включена между узлами i и j, то проводимость этой ветви войдёт в элементы матрицы узловых проводимостей, которые находятся на пересечении строк и столбцов с номерами i и j. На главной диагонали все проводимости записываем со знаком «+», вне главной диагонали со знаком «-». Процедура составления уравнений заканчивается, когда рассмотрены все ветви.

 

Матрица узловых проводимостей цепи, показанной на рис. 2:

 

.

 

Вектор узловых напряжений:

 

.

 

Система уравнений по методу узловых напряжений:

 

.

 

Токи ветвей найдем из соотношений:

 

;

;

.

 

Для того чтобы найти токи и , необходимо вернуться к первоначальной схеме и записать уравнения по второму закону Кирхгофа для ветвей с источниками напряжения.

 

,
 
 
 
 
)
(
R
E
V
I
-
=



<== предыдущая лекция | следующая лекция ==>
Прогноз продаж, точка безубыточности | Конфликт: насилие и сексКонфликт: насилие и секс
Поделиться с друзьями:


Дата добавления: 2017-02-25; Мы поможем в написании ваших работ!; просмотров: 471 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Сложнее всего начать действовать, все остальное зависит только от упорства. © Амелия Эрхарт
==> читать все изречения...

2187 - | 2073 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.