Многочисленные эксперименты по изучению свойств химических элементов в первой половине XIX в. привели ученых к убеж-
дению, что свойства веществ и их качественное разнообразие обусловлены не только составом элементов, но и структурой их молекул. К этому времени мануфактурное производство сменилось фабричным, опирающимся на машинную технику и широкую сырьевую базу. В химическом производстве стала преобладать переработка огромных масс вещества растительного и животного происхождения. Качественное разнообразие данных веществ потрясающе велико — сотни тысяч химических соединений, состав которых, тем не менее, крайне однообразен, так как они состоят из нескольких элементов-органогенов. Это — углерод, водород, кислород, сера, азот, фосфор. Объяснение необычайно широкому разнообразию органических соединений при столь бедном элементном составе было найдено в явлениях, получивших названия изомерии и полимерии. Так было положено начало второму уровню развития химических знаний, который получил название структурной химии.
Структурная химия стала более высоким уровнем по отношению к учению о составе вещества. При этом химия из науки преимущественно аналитической превратилась в науку синтетическую. Главным достижением этого этапа развития химии стало установление связи между структурой молекул и реакционной способностью веществ.
Сам термин «структурная химия» — понятие условное. В нем, прежде всего, подразумевается такой уровень химических знаний, при котором, комбинируя атомы различных химических элементов, можно создать структурные формулы любого химического соединения. Возникновение структурной химии означало, что появилась возможность для целенаправленного качественного преобразования веществ, создания схемы синтеза любых химических соединений, в том числе и ранее неизвестных.
Основы структурной химии были заложены еще Дж. Дальтоном, который показал, что любое химическое вещество представляет собой совокупность молекул, состоящих из определенного количества атомов одного, двух или трех химических элементов. Затем И. Бер-целиус выдвинул идею, что молекула представляет собой не простое нагромождение атомов, а определенную упорядоченную структуру атомов, связанных между собой электростатическими силами. Как позже показал химик Ш. Жерар, это утверждение было верно не всегда, поэтому еще в середине XIX в. структура молекул оставалась загадочной.
В 1857 г. немецкий химик А. Кекуле опубликовал свои наблюдения о свойствах некоторых элементов, могущих заменять атомы водорода в ряде соединений, и ввел новый термин — сродство. Он стал обозначать количество атомов водорода, которые может заместить данный химический элемент. Число единиц сродства, прису-
щее данному химическому элементу, Кекуле назвал вагентностыо. При объединении атомов в молекулу происходило замыкание свободных единиц сродства. Таким образом, понятие «структура молекулы» свелось к построению наглядных формульных схем, которые служили химикам руководством в их практической работе, показывали, какие исходные вещества нужно брать для получения конечного продукта.
Структурная химия позволяет наглядно демонстрировать валентность химических элементов как число единиц сродства, присущих атому: =С=; -О-; Н-. Комбинируя атомы различных химических элементов с их единицами сродства, можно создать структурные формулы любого химического соединения. А это означает, что химик в принципе может создавать план синтеза любого химического соединения — как уже известного, так и еще неоткрытого. То есть химик может прогнозировать получение неизвестного соединения и проверить свой прогноз синтезом.
К сожалению, схемы Кекуле не всегда можно было осуществить на практике. Часто придуманная химиками реакция, которая должна была привести к получению вещества с нужной структурной формулой, не происходила. Это было вызвано тем, что подобные формальные схемы не учитывали реакционной способности веществ, вступавших в химическую реакцию.
Поэтому важнейшим шагом в развитии структурной химии стало создание теории химического строения органических соединений русским химиком А.М. Бутлеровым. Бутлеров вслед за Кекуле признавал, что образование молекул из атомов происходит за счет замыкания свободных единиц сродства, но при этом он указывал на то, с какой энергией (большей или меньшей) это сродство связывает вещества между собой. Иными словами, Бутлеров впервые в истории химии обратил внимание на энергетическую неравноценность разных химических связей. Эта теория позволила строить структурные формулы любого химического соединения, так как показывала взаимное влияние атомов в структуре молекулы, а через это объясняла химическую активность одних веществ и пассивность других. Кроме того, она указывала на наличие активных центров и активных группировок в структуре молекул.
В XX в. структурная химия получила дальнейшее развитие. В частности, было уточнено понятие структуры, под которой стали понимать устойчивую упорядоченность качественно неизменной системы. Также было введено понятие атомной структуры — устойчивой совокупности ядра и окружающих его электронов, находящихся в электромагнитном взаимодействии друг с другом, и молекулярной структуры — сочетания ограниченного числа атомов, имеющих закономерное расположение в пространстве и связанных друг с другом химической связью с помощью валентных электронов.
На основе достижений структурной химии у исследователей появилась уверенность в положительном исходе экспериментов в области органического синтеза. Сам термин «органический синтез» появился в 1860—1880-е гг. и стал обозначать целую область науки, названную так в противоположность общему увлечению анализом природных веществ. Этот период в химии был назван триумфальным шествием органического синтеза. Химики гордо заявляли о своих ничем не сдерживаемых возможностях, обещая синтезировать из угля, воды и воздуха все самые сложные тела, вплоть до белков, гормонов и пр. И действительность, казалось, подтверждала эти заявления: за вторую половину XIX в. число органических соединений за счет вновь синтезированных возросло с полумиллиона до двух миллионов.
В это время появились всевозможные азокрасители для текстильной промышленности, различные препараты для фармации, искусственный шелк и т.д. До этого подобные материалы добывались в ограниченных количествах и с огромными затратами низкопроизводительного, преимущественно сельскохозяйственного, труда.
Современная структурная химия достигла больших результатов. Синтез новых органических веществ позволяет получить полезные и ценные материалы, отсутствующие в природе. Так, ежегодно в мире синтезируют тысячи килограммов аскорбиновой кислоты (витамина С), множество новых лекарств, среди которых — безвредные антибиотики, лекарства против гипертонии, язвенной болезни и др.
Самым последним достижением структурной химии является открытие совершенно нового класса металлорганических соединений, которые за свою двухслойную структуру получили название «сэндвичевых» соединений. Молекула этого вещества представляет собой две пластины из соединений водорода и углерода, между которыми находится атом какого-либо металла.
Исследования в области современной структурной химии идут по двум перспективным направлениям:
1) синтез кристаллов с максимальным приближением к идеальной решетке для получения материалов с высокими техническими показателями: максимальной прочностью, термической стойкостью, долговечностью в эксплуатации и др.;
2) создание кристаллов с заранее запрограммированными дефектами кристаллической решетки для производства материалов с заданными электрическими, магнитными и другими свойствами.
Решение каждой из этих проблем имеет свои сложности. Так, для решения первой проблемы необходимо соблюдение таких условий выращивания кристаллов, которые исключали бы воздействие на процесс всех внешних факторов, в том числе и поля гравитации (земного притяжения). Поэтому кристаллы с заданными свойства-
ми выращиваются на орбитальных станциях в космосе. Решение второй проблемы затруднено тем, что, наряду с запрограммированными дефектами, практически всегда образуются и нежелательные нарушения.
Тем не менее, классическая структурная химия была ограничена рамками сведений только о молекулах вещества, находящегося в дореакционном состоянии. Этих сведений недостаточно для того, чтобы управлять процессами превращения вещества. Так, согласно структурным теориям должны быть вполне осуществимы многие химические реакции, которые на практике не происходят. Большое количество реакций органического синтеза, основанных лишь на принципах структурной химии, имеют столь низкие выходы продукции и такие большие отходы в виде побочных продуктов, что не могут быть использованы в промышленности. К тому же подобный синтез требовал в качестве исходного сырья дефицитных активных реагентов и сельскохозяйственной продукции, в том числе и пищевой, что крайне невыгодно в экономическом отношении.
Поэтому изумление успехами структурной химии было недолгим. Интенсивное развитие автомобилестроения, авиации, энергетики, приборостроения в первой половине XX в. выдвинуло новые требования к производству материалов. Необходимо было получить высокооктановое моторное топливо, специальные синтетические каучуки, пластмассы, высокостойкие изоляторы, жаропрочные органические и неорганические полимеры, полупроводники. Для получения этих материалов способ решения основной проблемы химии, основанный на учении о составе и структурных теориях, был явно недостаточен. Он не учитывал резких изменений свойств вещества в результате влияния температуры, давления, растворителей и многих других факторов, воздействующих на направление и скорость протекания химических процессов. Учет и использование этих факторов вывело химию на новый качественный уровень ее развития.