Уже древние мудрецы задавались вопросом о происхождении и устройстве Вселенной. Их взгляды и идеи были неотъемлемым компонентом философских систем древности. Эти первые космологические идеи, сохранившиеся до наших дней в виде мифов, основывались на астрономических наблюдениях. Жрецам Вавилона, Египта, Индии и Китая удалось точно вычислить продолжительность года, повторяемость солнечных и лунных затмений. Наблюдая за небесными телами, они смогли выявить две группы небесных тел: подвижные и неподвижные. Множество звезд долгое время считались неподвижными объектами. К числу подвижных тел относились Луна, Солнце и пять известных в то время планет, названных именами богов (впервые это было сделано в Вавилоне, сегодня же мы используем в качестве названий планет имена римских богов) — Меркурий, Венера, Марс, Юпитер и Сатурн. В их честь неделя была разделена на семь дней, каждый из которых в существующей и сегодня астрологической традиции связан с одним из подвижных тел. Из наблюдения видимого движения Солнца по небесной сфере были открыты двенадцать так называемых зодиакальных созвездий.
После того как появилась философия, пришедшая вместе с наукой на смену мифологии, ответ на «вечные» вопросы стали искать в основном в рамках философских концепций. В античности появилось несколько интересных космологических моделей Вселенной, принадлежащих Пифагору, Демокриту, Платону. Тогда же возникли и первые гелиоцентрические модели Вселенной. Так, Гераклид Понтийский признавал суточное вращение Земли и ее движение
вокруг покоящегося Солнца. Аристарх Самосский выдвигал идею о том, что Земля вращается по окружности, центром которой служит Солнце. Но гелиоцентрические идеи были отвергнуты большинством античных мыслителей, и общепризнанным итогом античной космологии стала геоцентрическая концепция, сформулированная Аристотелем и усовершенствованная Птолемеем. Данная модель просуществовала в течение всего Средневековья. Она была очень сложной, так как для компенсации видимого движения планет, совершающих петлеобразные движения, пришлось ввести систему деферентов и эпициклов.
С приходом Нового времени философия уступила свое первенство в создании космологических моделей науке, которая добилась особенно больших успехов в XX в., перейдя от различных догадок к достаточно обоснованным фактам, гипотезам и теориям. Первым результатом стало появление в XVI в. гелиоцентрической модели Вселенной, автором которой стал Николай Коперник. В этой модели Вселенная все еще представляла собой замкнутую сферу, в центре которой находилось Солнце, а вокруг него вращались планеты, в том числе и Земля.
Успехи космологии и космогонии в XVIII—XIX вв. завершились созданием классической полицентрической картины мира, ставшей начальным этапом развития научной космологии. Данная модель достаточно проста и понятна. Вселенная считается бесконечной в пространстве и во времени, иными словами, вечной. Основным законом, управляющим движением и развитием небесных тел, является закон всемирного тяготения. Пространство никак не связано с находящимися в нем телами, играя пассивную роль вместилища для этих тел. Время также не зависит от материи, являясь универсальной длительностью всех природных явлений и тел. Исчезни вдруг все тела, пространство и время сохранились бы неизменными. Количество звезд, планет и звездных систем во Вселенной бесконечно велико. Каждое небесное тело проходит длительный жизненный путь. На смену погибшим, точнее, погасшим, звездам приходят новые, молодые светила. Хотя детали возникновения и гибели небесных тел оставались неясными, в основном эта модель казалась стройной и логически непротиворечивой. В таком виде классическая полицентрическая модель просуществовала в науке вплоть до начала XX в.
Однако в данной модели Вселенной было несколько недостатков. Закон всемирного тяготения объяснял центростремительное ускорение планет, но не говорил, откуда взялось стремление планет, а также любых материальных тел двигаться равномерно и прямолинейно. Для объяснения инерциального движения пришлось допустить существование в ней божественного «первотолчка», приведшего в движение все материальные тела. Кроме того, для кор-
рекции орбит космических тел также допускалось вмешательство Бога. Таким образом, классическая полицентрическая модель Вселенной лишь частично носила научный характер, она не смогла дать научного объяснения происхождения Вселенной и поэтому была заменена другими моделями.
Космологические парадоксы
К концу XIX в. появились серьезные сомнения в классической космологической модели. Они приняли форму так называемых космологических парадоксов — фотометрического, гравитационного и термодинамического.
Фотометрический парадокс. Еще в XVIII в. швейцарский астроном Р. Шезо высказал сомнения в пространственной бесконечности Вселенной. Если предположить, утверждал Шезо, что в бесконечной Вселенной существует бесконечное множество звезд и они распределены в пространстве равномерно, то тогда по любому направлению взгляд земного наблюдателя непременно натыкался бы на какую-нибудь звезду. Тогда небосвод, сплошь усеянный звездами, имел бы бесконечную светимость, т.е. такую поверхностную яркость, что даже Солнце на его фоне казалось бы черным пятном. Однако этого не происходит. Независимо от Шезо к аналогичным же выводам пришел известный немецкий астроном Ф. Ольберс. Это парадоксальное утверждение получило в астрономии наименование фотометрического парадокса Шезо—Ольберса. Таков был первый космологический парадокс, поставивший под сомнение пространственную бесконечность Вселенной.
Гравитационный парадокс. В конце XIX в. немецкий астроном К. Зеелигер обратил внимание на другой парадокс, также неизбежно вытекавший из представлений о бесконечности Вселенной. Он получил название гравитационного парадокса. Нетрудно подсчитать, что в бесконечной Вселенной с равномерно распределенными в ней телами сила тяготения со стороны всех тел Вселенной на данное тело оказывается бесконечно большой или неопределенной. Результат зависит от способа вычисления. Поскольку этого не происходит, Зеелигер сделал вывод, что количество небесных тел во Вселенной ограничено, а значит, и сама Вселенная не бесконечна.
Термодинамический парадокс. Третий, термодинамический, парадокс также был сформулирован в XIX в. Он вытекает из второго начала термодинамики — принципа возрастания энтропии. Мир полон энергии, которая подчиняется важнейшему закону природы — закону сохранения энергии. Казалось бы, из этого закона неизбежно вытекает вечный круговорот материи во Вселенной. В самом деле, если в природе при всех изменениях материи она не исчезает и не возникает из ничего, а лишь переходит из одной формы суще-
ствования в другую, то Вселенная вечна, а материя, ее составляющая, пребывает в вечном круговороте. Таким образом, погасшие звезды снова превращаются в источник света и тепла. Никто, конечно, не знал, как это происходит, но убеждение в том, что Вселенная в целом всегда одна и та же, было в то время почти всеобщим.
Тем неожиданнее прозвучал вывод из второго начала термодинамики, открытого в середине XIX в. англичанином Кельвином и немецким физиком Клаузиусом. При всех превращениях различные виды энергии в конечном счете переходят в тепло, которое, будучи предоставлено себе, стремится к состоянию термодинамического равновесия, т.е. рассеивается в пространстве. Так как процесс рассеяния тепла необратим, то рано или поздно все звезды погаснут, все активные процессы в природе прекратятся и Вселенная превратится в мрачное замерзшее кладбище. Наступит тепловая смерть Вселенной.
Встать на позицию Клаузиуса — значит признать, что Вселенная имела когда-то начало и неизбежно будет иметь конец. Действительно, если бы в прошлом Вселенная существовала вечно, то в ней давно наступило бы состояние тепловой смерти, а так как этого нет, то, по убеждению Клаузиуса и многих других его современников, Вселенная была сотворена сравнительно недавно, а в будущем, если не случится какого-нибудь чуда, Вселенную ждет тепловая смерть.
Таким образом, концепция тепловой смерти Вселенной, термодинамический парадокс подставили под сомнение вопрос о вечности Вселенной во времени. Три космологических парадокса заставили ученых усомниться в классической космологической модели Вселенной, побудили их к поискам новых непротиворечивых моделей.