Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Направленная защита с высокочастотной блокировкой




Короткие замыкания на мощных линиях электропередачи, как правило, необходимо отключать без выдержки времени с целью сохранения устойчивости энергосистемы. Защиты с относительной селективностью в общем случае обеспечить быстрое отключение поврежденной линии не могут, а продольная дифференциальная токовая защита линии, как отмечалось, имеет ограниченное применение. Для создания защиты с абсолютной селективностью необходимо иметь информацию с противоположного конца защищаемой линии.

При коротком замыкании в точке К (рис. 15.10) срабатывают органы направления мощности защиты 1, 3, 4, а защиты 2 не срабатывает, так как направление мощности короткого замыкания на этом конце линии от линии к шинам. Защита 2 посылает высокочастотный сигнал, запрещающий (блокирующий) срабатывание защиты 1, а защиты 3 и 4 срабатывают и отключают поврежденную линию.

Таким образом, рассматриваемая защита имеет две части: релейную и высокочастотную. Релейная часть защиты содержит измерительный орган направления мощности, два измерительных (пусковых) органа тока и логический орган. Ток срабатывания первого пускового органа отстраивается от рабочего тока линии, а ток срабатывания второго пускового органа превышает ток срабатывания первого на 10 %. Логический орган реализует пуск приемопередатчика высокочастотной части защиты при несрабатывании органа направления мощности и срабатывании первого пускового органа, а также обеспечивает действие защиты на отключение выключателя линии при срабатывании органа направления мощности, второго пускового органа тока и при отсутствии высокочастотного сигнала.

Пусковые органы тока могут быть заменены дистанционными пусковыми органами.

Высокочастотная часть защиты обеспечивает генерацию, передачу и прием высокочастотного сигнала. Высокочастотный сигнал связи организуется по контуру провод одной фазы защищаемой линии — земля. Для предотвращения распространения высокочастотного сигнала на соседние линии электропередачи и уменьшения затухания этого сигнала по концам выбранной фазы линии устанавливаются высокочастотные заградители ВЗ (рис. 15.11), представляющие собой большое сопротивление для тока высокой частоты (30—500 кГц) и практически нулевое сопротивление для тока промышленной частоты.

Высокочастотная аппаратура защиты (фильтр присоединения ФП и приемопередатчик ПП, содержащий генератор ГВЧ и приемник ПВЧ высокой частоты) подключаются к проводу линии через конденсатор связи С, изолирующий эту аппаратуру от высокого напряжения защищаемой линии. Конденсатор связи представляет собой очень большое сопротивление для тока промышленной частоты (> 1200 кОм) и малое сопротивление для тока высокой частоты. Приемопередатчик ПП связан с фильтром присоединения ФП посредством высокочастотного кабеля ВК. Фильтр присоединения состоит: из воздушного трансформатора ВТ и конденсатора С1. Обмотки ВТ имеют отпайки, что позволяет изменять число витков обмоток, а следовательно, и индуктивность ВТ. Назначением ФП является согласование (настройка в резонанс на частоте ПП) сопротивлений ВК и С. Обмотка ВТ, подключенная к конденсатору связи С, защищена разрядником Р, что предотвращает попадание высокого напряжения на аппаратуру защиты в случае пробоя конденсатора связи С.

Направленная защита с высокочастотной блокировкой обладает абсолютной селективностью и имеет хорошую чувствительность, что предопределило ее широкое использование для защиты линий электропередачи. Поскольку при качаниях в энергосистеме защита может ложно сработать, если центр качаний находится на защищаемой линии, защита оснащается устройством блокировки от качаний.

22 ВОПРОС

ДИФФЕРЕНЦИАЛЬНАЯ ТОКОВАЯ ЗАЩИТА
6-1. Принцип действия и область применения
Принцип действия продольной дифференциальной токовой защиты известен уже более 70 лет. Принципиальная схема дифференциальной защиты (в дальнейшем будем опускать слово «продольная») с циркулирующими токами показана на рис. 6-1 для одной фазы какого-то элемента, имеющего в начале и в конце одинаковые по значению первичные токи (/ы = /1-2). С обеих сторон защищаемого элемента установлены трансформаторы тока ITT и 2ТТ, ограничивающие зону действия дифференциальной защиты. Вторичные обмотки ITT и 2ТТ соединяются последовательно (конец ITT с началом 2ТТ), а токовое реле дифференциальной защиты ТД подключается к ним параллельно.
При к. з. в точке К за пределами зоны действия дифференциальной защиты (такое к.з. называется внешним или сквозным), а также в нормальном режиме нагрузки вторичные токи трансформаторов тока соответственно /2-1 и /2-2 циркулируют по соединительным проводам (плечам) защиты (рис. 6-1,а). При одинаковых коэффициентах трансформации трансформаторов

Рис. 6-1. Принципиальная схема продольной дифференциальной зашиты с циркулирующими токами: а — токо- распределение при внешнем к. з.; б — то же при к. з. в зоне действия защиты
тока ITT и 2ТТ и их работе без погрешностей значения вторичных токов /2-i и /2-2 равны между собой, а направления их в реле ТД — противоположны. Следовательно, в рассматриваемом идеальном случае ток в реле ТД
(6-1)
Таким образом, по принципу действия дифференциальная защита не реагирует на повреждения вне ее зоны действия, т. е. на соседних элементах (линиях, двигателях и т.п.), и поэтому может быть выполнена без выдержки времени. Эта защита относится к группе защит с абсолютной селективностью [2].
Практически в режиме нагрузки, и особенно при внешнем к. з., ток в реле ТД не может быть равен нулю, поскольку трансформаторы тока ITT и 2ТТ имеют разные значения погрешностей, и даже при равных первичных токах вторичные токи /2-1 и /2-2 не равны между собой. Ток в реле ТД в режимах нагрузки
и внешнего к. з. называется током небаланса /нб. И выражение (6-1) следует изменить:
(6-1 а)
Для обеспечения несрабатывания дифференциальной защиты в этих режимах ток срабатывания реле ТД выбирается большим, чем ток небаланса:
(6-2)
где kn — коэффициент надежности, принимаемый для современных дифференциальных защит около 1,3.
При к. з. в зоне действия дифференциальной защиты (рис. 6-1,6) в случае двустороннего питания защищаемого элемента, направления первичного тока /1-2 и вторичного тока /2-2 изменяются на 180°. При этом в реле ТД проходит сумма токов к. з.:
и реле ТД срабатывает на отключение поврежденного элемента от источников питания. В случае одностороннего питания в реле ТД проходит один из токов к. з.: /2-1 или /2-2. При этом дифференциальная защита также должна срабатывать на отключение. Режим одностороннего питания является расчетным при оценке чувствительности дифференциальной защиты, которая производится с помощью коэффициента чувствительности [1]
(6-3)
где /р. мин = /2-1 ИЛИ /2-2 (рис. 6-1,6).
В соответствии с Правилами [1] продольная дифференциальная защита должна устанавливаться на трансформаторах мощностью 6,3 MB-А и более, а также на трансформаторах 4 MB-А при их параллельной работе. Кроме того, дифференциальная защита устанавливается на трансформаторах 1—2,5 MB-А в тех случаях, когда токовая отсечка не удовлетворяет требованиям чувствительности (§ 5-2), а максимальная токовая защита имеет время срабатывания более 0,6 с. Дифференциальная защита предусматривается также для трансформаторов 1—2,5 MB-А, устанавливаемых в районах, подверженных землетрясениям (поскольку газовая защита здесь может использоваться только с действием на сигнал).





Поделиться с друзьями:


Дата добавления: 2017-02-28; Мы поможем в написании ваших работ!; просмотров: 435 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Что разум человека может постигнуть и во что он может поверить, того он способен достичь © Наполеон Хилл
==> читать все изречения...

2484 - | 2299 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.