Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Преобразование активных ветвей




 

а) Замена ветви с несколькими источниками ЭДС ветвью с одной эквивалентной. ЭДС.

Условиями эквивалентности является равенство напряжений на зажимах (U ab, рис.13) исходной и эквивалентной ветвей, а также токов в ветвях.

 

 

 
 

Величины Е Э, R Э можно определить с помощью второго закона Кирхгофа. Так, для исходной ветви (рис. 13)

. (13)

 

для эквивалентной ветви

. (14)

 

Сравнивая выражения (13) и (14), получим

 

. (15)

 

 

Формула (15) получена с учетом того, что направление эквивалентной ЭДС выбрано совпадающим с направлением тока в цепи. Отсюда следует простое правило расчета Е Э: если направление ЭДС источника в исходной цепи (Е 1, рис.13) совпадает с направлением тока, то она входит в правую часть формулы (15) со знаком плюс, иначе - минус (Е 2, рис.13).

 

б) Замена параллельных ветвей, содержащих источники ЭДС и тока, одной эквивалентной.

 
 

 

Эквивалентная ЭДС и сопротивление определяются по следующим формулам:

 

 

. (16)

 

 

 

. (17)

 

 

где q – общее количество параллельных ветвей;

n – число ветвей, содержащих источники ЭДС;

m – число ветвей, содержащих источники тока.

 

В схеме (рис.14) направление эквивалентной ЭДС выбрано совпадающим с направлением тока. В этом случае знаки слагаемых в числителе формулы (16) можно определить по правилу: если направление ЭДС (источника тока) в исходной ветви совпадает с выбранным направлением эквивалентной ЭДС, то в числителе выражения (16) перед соответствующим слагаемым ставится знак плюс, иначе – минус.

Так для схемы (рис.14)

 

 

 
 

 

 

 
 

в) Эквивалентные преобразования активных треугольника и звезды.

 

При преобразовании треугольник – звезда в ветвях эквивалентной звезды содержатся как пассивные элементы (сопротивления), так и активные (источники ЭДС). Величины эквивалентных ЭДС определяются из условия равенства разности потенциалов между соответствующими узлами до и после преобразования при полном отключении преобразуемого участка от остальной части цепи (рис.15). В этом случае во всех ветвях треугольника течет ток

 

/ (18)

 

 

а в ветвях звезды токи отсутствуют.

Запишем второй закон Кирхгофа для ветви R 12, E 12 треугольника:

 
 

и для звезды

 
 

 

Поскольку величины напряжений U12 в обеих схемах должны быть одинаковыми, получим

/ (19)

 

Аналогично для остальных ветвей имеем

 

/ (20)

 

/ (21)

 

 

Выражения (18) – (21) дают возможность определять величины эквивалентных ЭДС.

При переходе от треугольника к эквивалентной звезде с целью упрощения решаемой задачи величина ЭДС в одной из ветвей звезды может быть выбрана произвольно. Пусть, например, Е 3 = 0 тогда из выражения (20), (21) получим

 

/ (22)

 

/ (23)

 

При переходе от звезды к эквивалентному треугольнику в качестве дополнительного условия можно принять

/ (24)

 

Тогда I = 0 и из (19) – (21) получим

.

.

 

.

 

 

Величины эквивалентных сопротивлений звезды и треугольника определяются по формулам (7) – (12).

Рассмотрим, например схему (рис.16), которая при помощи преобразования звезды с ветвями (R 1, E 1), (R 2, E 2), (R 3, E 3) в эквивалентный треугольник получает вид

(рис.17).

Выберем в качестве дополнительного условия

 

 

тогда

 

 
 

Рассмотрим преобразование треугольника 1 2 3 (рис. 16) в эквивалентную звезду, для чего выделим его из цепи (рис. 18 а).

Ток треугольника

 
 

Напряжения между узлами треугольника и звезды

 

 


Принимаем для упрощения, тогда

 

 
 

 
 

В итоге схема (рис. 16) принимает вид, представленный на рис. 19.

 

ЗАДАНИЕ

 

 

Задача 1.

Определить эквивалентное сопротивление R Э (рис. 20, 21, 22) относительно указанных зажимов, если сопротивления равны 10 Ом.

 

 

 
 

 

 

Таблица 1

№ варианта                    
  R7=0 R4 R3=0 R3 R1=0 R1 R2=0 R2 R4=0 R5=0 R7=¥  

 

 
 

 

Таблица 2

 

№ варианта                    
  R5=0 Rab=? R5=¥ Rab=? R4=0 Rab=? R3=0 Rcd=? R3=0 Rac=? R1=¥ Rbd=? R5=0 Rac=? R2=0 Rcd=? R4=¥ Rad=? R2=¥ Rbc=?

 
 

Таблица 3

 

№ варианта                    
  R9=0 Rab=? R4=¥ Rab=? R7=¥ Rab=? R8=0 R9=0 Rbc=? R8=¥ R9=0 Rac=? R8=0 R9=¥ Rkd=? R8=0 Rcd=? R2=0 R7=0 Rcb=? R6=¥ Rck=? R3=¥ R8=0 Rak=?

Задача 2.

 

Используя преобразования параллельных ветвей, упростить схему до трехконтурной. Составить уравнения по законам Кирхгофа для эквивалентной схемы.

 

 

Схемы к задаче 2:

 

 
 


 
 

Задача 3.

 

Используя взаимные преобразования активных треугольника и звезды, упростить схему до трехконтурной.

 

 
 

Схемы к задаче 3:

 

 

 
 

 
 

 

 
 

 
 

 

 
 

 

 

Задача 4.

В схеме (рис. 23) определить показания приборов, если сопротивления амперметров считать равными нулю, а сопротивления вольтметров – бесконечно большими. Напряжение источника U=20 В.

 

 
 

 

Таблица 5

 

Вариант Данные к задаче 4
R1, Ом R2, Ом R3, Ом R4, Ом R5, Ом R6, Ом R7, Ом R8, Ом
  ¥              
               
               
  ¥              
          ¥      
      ¥          
        ¥        
        ¥        
                ¥
    ¥            
  ¥           ¥  
          ¥     2,5
                 
            ¥    
        ¥        
  ¥              
            ¥    
                7,5
    ¥         ¥  
                ¥
  ¥              
    ¥            
      ¥          
        ¥        
                 
  ¥              
          ¥      
    ¥            
                 

 

 

Задача 5.

В цепи (рис. 24) три источника питания, ЭДС которых равны Е 1, Е 2, Е 3; их внутренние сопротивления соответственно равны R01=0,1 Ом; R02=0,2 Ом; R03=0,3 Ом. Отдельные ветви цепи могут быть разомкнуты при помощи рубильников Р1, Р2, Р3, Р4, Р5, Р6. Сопротивления в пассивных ветвях R1=1,5 Ом; R2=2 Ом; R3=2,5 Ом; R4=2 Ом; R5=R6=R7=R8=3 Ом. Определить по методу непосредственного применения законов Кирхгофа токи во всех ветвях и режимы работы источников энергии. Составить баланс мощностей.

 
 

 

 

Таблица 6

 

Вариант Данные к задаче 5
Е1, В Е2, В Е3, В Разомкнуты рубильники
        Р4, Р5, Р6
        Р2, Р5, Р6
        Р2, Р4, Р5
        Р1, Р4, Р6
        Р2, Р3, Р6
        Р4, Р5, Р6

 

Продолжение табл. 6

 

Вариант Данные к задаче 5
Е1, В Е2, В Е3, В Разомкнуты рубильники
        Р2, Р4, Р5
        Р2, Р3, Р6
        Р1, Р4, Р6
        Р2, Р5, Р6

 

 

СПИСОК ЛИТЕРАТУРЫ

 

1. Зевеке Г.В., Ионкин П.А., Нетушил А.В., Страхов С.В. Основы теории цепей. – М.: Энергоатомиздат, 1989. – 528 с.

2. Бессонов Л.А. Теоретические основы электротехники. Электрические цепи. – М.: Высш. шк., 1996. – 638 с.

3. Нейман Л.Р., Демирчян К.С. Теоретические основы электротехники.– М.: Энергия, 1981. Ч. 1. – 536 с.

4. Теоретические основы электротехники. / Под ред. П.А. Ионкина. – М.:

Высш. шк., 1976. Т. 1. – 544 с.

5. Атабеков Г.И. Теоретические основы электротехники. – М.: Энергия,

1978. Ч. 1. – 592 с.

 

Составители: О. П. Куракина, В. Л. Федоров

 

 

Редактор В. А. Маркалева

 

ЛР № 020321 от 28.11.96

 

 

Подписано в печать. Формат 60x84 1/16.

Оперативный способ печати. Усл. печ. л. 2.0. Уч..-изд. л. 2.0

Бумага офсетная. Тираж. Заказ.

Издательство ОмГТУ. 644050, Омск, Пр. Мира, 11

типография ОмГТУ





Поделиться с друзьями:


Дата добавления: 2017-02-28; Мы поможем в написании ваших работ!; просмотров: 515 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студенческая общага - это место, где меня научили готовить 20 блюд из макарон и 40 из доширака. А майонез - это вообще десерт. © Неизвестно
==> читать все изречения...

2346 - | 2303 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.