Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Расчет изменения энтропии для различных процессов




Основными процессами в термодинамике являются:

· изохорный, протекающий при постоянном объеме;

· изобарный, протекающий при постоянном давлении;

· изотермический, происходящий при постоянной температуре;

· адиабатный, при котором теплообмен с окружающей средой отсутствует.

Изохорный процесс

При изохорном процессе выполняется условие V = const.

Из уравнения состояния идеального газа (pV = RT) следует:

p / T = R / V = const,

т. е. давление газа прямо пропорционально его абсолютной температуре:

p2 / p1 = T2 / T1.

Изменение энтропии в изохорном процессе определяется по формуле:

s2 – s1 = Δ s = cv ln (p2 / p1) = cv ln (T2 / T1)

Изобарный процесс

Изобарным называется процесс, протекающий при постоянном давлении p = const. Из уравнения состояния идеального газа следует:

V / T = R / p = const.

Изменение энтропии будет равно:

s2 – s1 = Δ s = cp ln (T2 / T1).

 

Изотермический процесс

При изотермическом процессе температура рабочего тела остается постоянной T = const, следовательно:

pV = RT = const

Изменение энтропии равно:

s2 – s1 = Δ s = R ln(p1/p2) = R ln(V2 / V1).

Адиабатный процесс

Адиабатным называется процесс изменения состояния газа, который происходит без теплообмена с окружающей средой (Q = 0).

Уравнение кривой адиабатного процесса (адиабаты) в p-V диаграмме имеет вид:

pV k = const.

В этом выражении k носит название показателя адиабаты (так же ее называют коэффициентом Пуассона).

Изменение энтропии равно:

Δ S = S2 – S1 = 0, т.е. S2= S1.

Фазовые переходы

При обратимом фазовом переходе температура остается постоянной, а теплота фазового перехода при постоянном давлении равна H фп, поэтому изменение энтропии равно:

.

При плавлении и кипении теплота поглощается, поэтому энтропия в этих процессах возрастает: S тв < S ж < S г. При этом энтропия окружающей среды уменьшается на величину S ф.п., поэтому изменение энтропии Вселенной равно 0, как и полагается для обратимого процесса в изолированной системе.

Второе начало термодинамики и «тепловая смерть Вселенной»

Клаузиус, рассматривая второе начало термодинамики, пришёл к выводу, что энтропия Вселенной как замкнутой системы стремится к максимуму, и в конце концов во Вселенной закончатся все макроскопические процессы. Это состояние Вселенной получило название «тепловой смерти» – общемирового хаоса, в котором невозможен более никакой процесс. С другой стороны, Больцман высказал мнение, что нынешнее состояние Вселенной – это гигантская флуктуация, из чего следует, что большую часть времени Вселенная все равно пребывает в состоянии термодинамического равновесия («тепловой смерти»).

По мнению Ландау, ключ к разрешению этого противоречия лежит в области общей теории относительности: поскольку Вселенная является системой, находящейся в переменном гравитационном поле, закон возрастания энтропии к ней неприменим.

Поскольку второе начало термодинамики (в формулировке Клаузиуса) основано на предположении о том, что Вселенная является замкнутой системой, возможны и другие виды критики этого закона. В соответствии с современными физическими представлениями мы можем говорить лишь о наблюдаемой части Вселенной. На данном этапе человечество не имеет возможности доказать ни то, что Вселенная есть замкнутая система, ни обратное.

Измерение энтропии

В реальных экспериментах очень трудно измерить энтропию системы. Техники измерения базируются на термодинамическом определении энтропии и требуют экстремально аккуратной калориметрии.

Для упрощения мы будем исследовать механическую систему, термодинамические состояния которой будут определены через её объем V и давление P. Для измерения энтропии определенного состояния мы должны сперва измерить теплоёмкость при постоянных объёме и давлении (обозначенную CV и CP соответственно), для успешного набора состояний между первоначальным состоянием и требуемым.

Тепловые ёмкости связаны с энтропией S и с температурой T согласно формуле:

где нижний индекс X относится к постоянным объёму и давлению. Мы можем проинтегрировать для получения изменения энтропии:

 

Таким образом, мы можем получить значение энтропии любого состояния (P, V) по отношению к первоначальному состоянию (P 0, V 0). Точная формула зависит от нашего выбора промежуточных состояний. Для примера, если первоначальное состояние имеет такое же давление, как и конечное состояние, то

 

.

В добавление, если путь между первым и последним состояниями лежит сквозь любой фазовый переход первого рода, скрытая теплота, ассоциированная с переходом, должна также учитываться.

Энтропия первоначального состояния должна быть определена независимо. В идеальном варианте выбирается первоначальное состояние как состояние при экстремально высокой температуре, при которой система существует в виде газа. Энтропия в этом состоянии подобна энтропии классического идеального газа плюс взнос от молекулярных вращений и колебаний, которые могут быть определены спектроскопически.

 





Поделиться с друзьями:


Дата добавления: 2017-02-28; Мы поможем в написании ваших работ!; просмотров: 1076 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2255 - | 2185 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.