Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Автокорреляция уровней динамического ряда и выявление его структуры.




Временной ряд будет нестационарным, если он содержит такие систематические составляющие как тренд и цикличность.

Нестационарные временные ряды характеризуются тем, что значения каждого последующего уровня временного ряда корреляционно зависят от предыдущих значений.

Автокорреляцией уровней временного ряда называется корреляционная зависимость между настоящими и прошлыми значениями уровней данного ряда.

Лагом l называется величина сдвига между рядами наблюдений.

Лаг временного ряда определяет порядок коэффициента автокорреляции. К примеру, если уровни временного ряда xt и xt–1 корреляционно зависимы, то величина временного лага равна единице. Следовательно, данная корреляционная зависимость определяется коэффициентом автокорреляции первого порядка между рядами наблюдений x1…xn–1 и x2…xn.. В случае если лаг между рядами наблюдений равен двум, то данная корреляционная зависимость определяется коэффициентом автокорреляции второго порядка и т. д.

При увеличении величины лага на единицу число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается на единицу. Поэтому максимальный порядок коэффициента автокорреляции рекомендуется брать равным n/4, где n – количество уровней временного ряда.

Автокорреляция между уровнями временного ряда оценивается с помощью выборочного коэффициента автокорреляции

Структуру временного ряда можно определить, рассчитав несколько последовательных коэффициентов автокорреляции. В результате данных вычислений можно выявить лаг l, для которого значение выборочного коэффициента автокорреляции rl будет наибольшим.

Анализ структуры временного ряда с помощью коэффициентов автокорреляции стоится на следующих правилах:

1) исследуемый временной ряд содержит только трендовую компоненту, если наибольшим будет значение коэффициента автокорреляции первого порядка rl–1;

2) исследуемый временной ряд содержит трендовую компоненту и колебания периодом l, если наибольшим будет коэффициент автокорреляции порядка l. Эти колебания могут быть как циклическими, так и сезонными;

3) если ни один из коэффициентов автокорреляции rl(l=1,L) не окажется значимым, то делается один из двух возможных выводов:

а) данный временной ряд не содержит трендовой и циклической компонент, а его колебания вызваны воздействием случайной компоненты, т. е. ряд представляет собой модель случайного тренда;

б) данный временной ряд содержит сильную нелинейную тенденцию, для выявления которой крайне важно провести его дополнительный анализ.





Поделиться с друзьями:


Дата добавления: 2017-02-28; Мы поможем в написании ваших работ!; просмотров: 920 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Жизнь - это то, что с тобой происходит, пока ты строишь планы. © Джон Леннон
==> читать все изречения...

2318 - | 2085 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.