Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Информационно-вычислительные сети




Информационно-вычислительные сети включают вычисли­тельные сети, предназначенные для распределенной обработки данных (совместное использование вычислительных мощно­стей), и информационные сети, предназначенные для совместно­го использования информационных ресурсов. Сетевая техноло­гия обработки информации весьма эффективна, так как предос­тавляет пользователю необходимый сервис для коллективного решения различных распределенных прикладных задач, увеличи­вает степень использования имеющихся в сети ресурсов (инфор­мационных, вычислительных, коммуникационных) и обеспечи­вает удаленный доступ к ним.

Распределение потоков сообщений с целью доставки каждо­го сообщения по адресу осуществляется на узлах коммутации (УК) с помощью коммутационных устройств. Система распределений потоков сообщений в УК получила название системы коммутации.

Под коммутацией в сетях передачи данных имеется в виду совокупность операций, обеспечивающих в узлах коммутации передачу информации между входными и выходными устройст­вами в соответствии с указанным адресом. При коммутации с накоплением (КН) абонент имеет постоянную прямую связь со своим УК и передает на него информацию. Затем эта информация передается через узлы коммуникации другим абонентам, причем в случае занятости исходящих каналов информация запоминается в узлах и передается по мере освобождения каналов в нужном направлении.

Базовые сетевые топологии

Рассмотрим (на примере локальных сетей) основные принципы комплексирования сетевого оборудования (или monoлогии сетей). При создании сети в зависимости от задач, которые она должна будет выполнять, может быть реализована одна из трех базовых топологий: «звезда», «кольцо» и «общая шина» — рис.2.

Рис. 2. Базовые сетевые топологии:

a — звезда; б — кольцо; в — шинная топология; г — логическое кольцо

Концепция топологии сети в виде звезды заимствована из об­ластибольших ЭВМ, в которой головная (хост-) машина полу­чает и обрабатывает все данные с периферийных устройств (терминалов или рабочих станций пользователя), являясь единствен­ным активным узлом обработки данных.

Информация между любыми двумя пользователями в этом случае проходит через центральный узел вычислительной сети. Пропускная способность сети определяется вычислительной мощностью узла и гарантируется для каждой рабочей станции. Коллизий (столкновений) данных не возникает.

Кабельное соединение достаточно простое, так как каждая рабочая станция связана с узлом. Затраты на прокладку кабелей высокие, особенно когда центральный узел географически рас­положен не в центре сети. При расширении вычислительных сетей не могут быть использованы ранее выполненные кабельные связи: к новому рабочему месту необходимо прокладывать отдельный кабель из центра сети.

Топология в виде звезды является наиболее быстродействую­щей из всех топологий вычислительных сетей, поскольку пере­дача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдель­ным линиям, используемым только этими рабочими станциями. Кроме того, частота запросов передачи информации от одной станции к другой невысока по сравнению с наблюдаемой при других топологиях.

При кольцевой топологии сети рабочие станции связаны одна с другой по кругу, т. е. рабочая станция 1 с рабочей станцией 2, рабочая станция 3 с рабочей станцией 4 и т. д. Последняя рабо­чая станция связана с первой. Коммуникационная связь замыка­ется в кольцо, данные передаются от одного компьютера к дру­гому как бы по эстафете. Если компьютер получит данные, предназначенные для другого компьютера, он передает их сле­дующему по кольцу. Если данные предназначены для получив­шего их компьютера, они дальше не передаются.

Прокладка кабелей от одной рабочей станции до другой мо­жет быть довольно сложной и дорогостоящей, особенно если географически рабочие станции расположены далеко от кольца (например, в линию).

Пересылка сообщений является очень эффективной, так как большинство сообщений можно отправлять по кабельной систе­ме одно за другим. Очень просто можно выполнить циркуляр­ный (кольцевой) запрос на все станции. Продолжительность пе­редачи информации увеличивается пропорционально количеству рабочих станций, входящих в вычислительную сеть.

Основная проблема кольцевой топологии заключается в том, что каждая рабочая станция должна участвовать в пересылке ин­формации, и в случае выхода из строя хотя бы одной из них работа в сети прекращается.

Топология «общая шина» (магистраль) предполагает использо­вание одного кабеля, к которому подключаются все компьютеры сети. В данном случае кабель используется совместно всеми станциями по очереди. Принимаются специальные меры для того, чтобы при работе с общим кабелем компьютеры не мешали друг другу передавать и принимать данные.

Надежность здесь выше, так как выход из строя отдельных компьютеров не нарушает работоспособность сети в целом. По­иск неисправностей в кабеле затруднен. Кроме того, так как используется только один кабель, в случае повреждения нарушает­ся работа всей сети.

Комбинированные топологические решения. Наряду с базовыми, на практике применяется ряд комбинирован­ных топологий. К таковым относится, например, логиче­ская кольцевая сеть, которая физически монтируется как соединение звездных топологий (рис. 2, г). Отдельные «звезды» включаются с помощью специальных коммутаторов, которые иногда называют «хаб» (от англ. Hub — концентратор).





Поделиться с друзьями:


Дата добавления: 2017-02-28; Мы поможем в написании ваших работ!; просмотров: 805 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинать всегда стоит с того, что сеет сомнения. © Борис Стругацкий
==> читать все изречения...

2349 - | 2104 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.