Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Классификация и структура микроконтроллеров (МК). Процессорное ядро МК, его основные характеристики.




 

Микроконтроллер (МК) представляет собой функционально законченную МПС, которая реализована в виде одной большой интегральной микросхемы. МК объединяет в одном кристалле основные элементы МПС: центральный процессор (ЦП), постоянное запоминающее устройство (ПЗУ), оперативное запоминающее устройство (ОЗУ), порты ввода/вывода.

В настоящее время выпускается большая номенклатура микроконтроллеров, которые принято подразделять на 8-, 16- и 32-разрядные.

Наиболее многочисленной группой этих приборов являются 8-разрядные МК. Это простые и дешевые МК, ориентированные на использование в относительно несложных устройствах промышленной автоматики, измерительной технике, средств связи, бытовой технике. Эти МК имеют невысокую производительность, которая, однако, вполне достаточна для решения широкого круга задач управления различными объектами.

В настоящее время МК выпускаются в виде семейств. Семейство микроконтроллеров – это ряд (набор) МК, обладающих одинаковыми функциональными характеристиками. Обычно фирма-производитель дает имя семействам своих МК. Например, PIC16 – семейство микроконтроллеров фирмы Microchip, AVR – семейство микроконтроллеров фирмы Atmel.

Большое разнообразие типов МК обеспечивает модульный принцип их построения. При этом все МК одного семейства содержат в себе базовый функциональный блок, одинаковый для всех МК семейства, и изменяемый функциональный блок, который отличает МК разных моделей в пределах одного семейства.

Базовый функциональный блок принято называть процессорным ядром МК. Процессорное ядро обозначают именем семейства МК, основой которого оно является. Например, ядро PIC16 - процессорное ядро семейства микроконтроллеров PIC16. Структура модульного МК приведена на рис. 1.

Процессорное ядро включает в себя:

· центральный процессор;

· внутреннюю контроллерную магистраль (ВКМ), состоящую из шин адреса, данных и управления;

· схему синхронизации МК, предназначенной для тактирования центрального процессора и шин магистрали;

· схему управления режимами работы МК, такими как - активный режим, в котором МК выполняет прикладную программу; режим пониженного энергопотребления; состояния начального запуска (сброса) и прерывания.

Изменяемый функциональный блок включает в себя модули памяти различного типа и объема (ПЗУ и ОЗУ), порты ввода/вывода, модуль тактового генератора (Г), таймеры и другие модули. Каждый модуль имеет выводы для подключения его к магистрали процессорного ядра. Это позволяет на уровне функционального проектирования новой модели МК подсоединить те или иные модули к магистрали процессорного ядра, создавая, таким образом, разнообразные по структуре МК в пределах одного семейства. Модули, объединенные в составе МК, размещаются на одном полупроводниковом кристалле. Отсюда появилось выражение «интегрированные на кристалле» периферийные модули.

Группа модулей периферийных устройств включает следующие основные типы:

· параллельные порты ввода/вывода;

· таймеры/счетчики, процессоры событий;

· контроллеры последовательного интерфейса нескольких типов (UART, SPI, I2C, CAN, USB);

· аналого-цифрового преобразования (АЦП);

· цифро-аналогового преобразования (ЦАП);

· контроллеры ЖК-индикаторов и светодиодной матрицы.

Возможны также некоторые другие типы модулей, например, модуль прямого доступа к памяти, модуль управления ключами силовых инверторов напряжения и т.п.

 

 

 

Рис. 1. Структура модульного микроконтроллера

 

В развитии элементной базы МК отчетливо прослеживается тенденция к закрытой архитектуре, при которой линии внутренних шин адреса и данных отсутствуют на выводах корпуса МК. И, как следствие, не представляется возможным использование внешних по отношению к МК микросхем запоминающих устройств. Поэтому разработчик микроконтроллерной системы при выборе элементной базы должен убедиться в том, чтобы прикладная программа проектируемой системы может разместиться во внутренней (резидентной) памяти МК. В противном случае придется перейти к МК с большим объемом внутреннего ПЗУ. Для подобных случаев производители обычно предлагают ряд модификаций МК с одним и тем же набором периферийных модулей и различными объемами резидентных памяти программ и данных.

 

Процессорное ядро микроконтроллера

 

Основными характеристиками, определяющими производительность процессорного ядра МК, являются:

· система команд процессора;

· способы адресации операндов в пространстве памяти;

· набор регистров для хранения промежуточных данных;

· организация процессов выборки и исполнения команд.

С точки зрения системы команд и способов адресации операндов процессорное ядро современных 8-разрядных МК реализуют на основе одного из двух принципов построения процессоров:

1) процессоры на основе CISC-архитектуры – это МК семейства MCS-51 фирм Intel, Atmel, Philips;

2) процессоры на основе RISC-архитектуры – это МК семейства PIC16, PIC17, PIC18 фирмы Microchip; семейство AVR фирмы Atmel.

CISC-процессоры выполняют большой набор команд с развитыми возможностями адресации, давая разработчику возможность выбрать наиболее подходящую команду для выполнения необходимой операции. В применении к 8-разрядным МК с CISC-архитектурой процессор может иметь однобайтный, двухбайтный и трехбайтный (редко четырехбайтный) формат команд. При этом не все команды могут использовать любой из способов адресации применительно к любому из регистров процессора. Выборка команды из памяти осуществляется побайтно в течение нескольких машинных циклов. Время выполнения каждой команды с учетом времени выборки может составлять от 1 до 10 циклов. Длительность машинного цикла равна периоду частоты тактирования внутренней магистрали микроконтроллера ¦BUS. Максимально допустимое значение частоты ¦BUS является одной из важнейших характеристик процессорного ядра, так как чем больше ¦BUS, тем выше его производительность.

В микроконтроллерах с RISC-архитектурой набор исполняемых команд сокращен до минимума. Для реализации более сложных операций приходится комбинировать команды. При этом все команды имеют формат фиксированной длины: например, 12, 14 или даже 16 бит для МК с 8-разрядным форматом обрабатываемых данных. Выборка из памяти и исполнение подавляющего большинства команд осуществляются за один машинный цикл МК, т.е. один период ¦BUS – одна команда. Система команд RISC-процессора предполагает возможность равноправного использования всех регистров процессора. Это обеспечивает дополнительную гибкость при выполнении ряда операций.

Производительность микроконтроллеров, как и микропроцессоров, принято оценивать числом элементарных операций, которые могут быть выполнены в течение одной секунды. Единица измерения производительности – миллион операций в секунду (MIPS). Для расчета численного значения производительности в MIPS принято использовать время выполнения команды пересылки «регистр-регистр». Эта команда присутствует в перечне команд любого МК и имеет минимальное время выполнения. Таким образом,

Производительность (MIPS)=1/tкоманды (мкс).

С точки зрения организации процессов выборки и исполнения команд в современных 8-разрядных МК применяется одна из двух уже рассмотренных ранее архитектур МПС: Принстонская (Фон-неймановская) и Гарвардская.

Основной особенностью Принстонской архитектуры является использование общей памяти для хранения программ и данных. В этой архитектуре блок интерфейса с памятью выполняет арбитраж запросов к памяти, обеспечивая выборку команд, чтение и запись данных, размещаемых в памяти и внутренних регистрах процессора. Основное достоинство Принстонской архитектуры – упрощение устройства МПС, так как реализуется обращение только к одной общей памяти. Кроме того, использование единой памяти позволяет оперативно перераспределять ресурсы между областями программ и данных. Размещение стека в общей памяти облегчает доступ к его содержимому.

Основной особенностью Гарвардской архитектуры является использование раздельных памяти программ и памяти данных.

До конца 70-х годов Принстонская архитектура была основной в вычислительной технике и использовалась для создания универсальных компьютеров, включая и персональные компьютеры. Однако с началом разработки микроконтроллеров стали проявляться ее недостатки, и оказалось, что Гарвардская архитектура дает определенные преимущества для этих устройств.

Дело в том, что для реализации большинства алгоритмов управления, которые используются в микроконтроллерных системах, такие преимущества принстонской архитектуры как гибкость и универсальность не имеют большого значения. Анализ реальных программ управления показал, что необходимый объем памяти данных МК, используемый для хранения промежуточных результатов, как правило, на порядок меньше требуемого объема памяти программ. В этих условиях использование единого адресного пространства приводило к увеличению формата команд за счет увеличения числа разрядов для адресации операндов. Применение отдельной небольшой по объему памяти данных способствовало сокращению длины команд и ускорению поиска информации в памяти данных.

Кроме того, процессоры с Гарвардской архитектурой выполняют команды за меньшее количество машинных циклов, чем процессоры с Принстонской архитектурой, за счет возможности реализации параллельных операций. Выборка следующей команды может происходить одновременно с выполнением предыдущей, и нет необходимости останавливать процессор на время выборки команды.

Основной недостаток Гарвардской архитектуры – большое число шин и усложнение структуры процессора практически не оказывает влияние на стоимость изготовления микроконтроллеров, так как все элементы системы реализуются на одном кристалле, то есть внутри одной микросхемы.

Как и в любом микропроцессоре, система команд процессора МК включает в себя четыре основные группы команд:

· команды пересылки данных;

· арифметические команды;

· команды логические и сдвига;

· команды передачи управления.

Практика применения МК в системах управления показала, что в управляющих программах много операций с отдельными битами портов и регистров. Поэтому с целью создания эффективных программ и сокращения объема их кода в большинстве современных МК предусмотрены специальные средства, называемые битовым процессором. Команды битового процессора позволяют непосредственно изменять отдельные биты, выполнять логические операции с ними, а также тестировать их.

Система команд МК по сравнению с универсальными МП имеет менее развитые группы арифметических и логических команд, но зато более мощные группы команд пересылки данных и передачи управления. Эта особенность определяется сферой применения МК, которые ориентированы на реализацию программ управления в реальном масштабе времени.

 





Поделиться с друзьями:


Дата добавления: 2017-02-25; Мы поможем в написании ваших работ!; просмотров: 693 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если президенты не могут делать этого со своими женами, они делают это со своими странами © Иосиф Бродский
==> читать все изречения...

2517 - | 2393 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.