Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


II. ЦИТОПЛАЗМА. Органеллы. Включения.




ОСНОВЫ ЦИТОЛОГИИ

I. Общие принципы структурно-функциональной организации клетки и её компоненты. Плазмолемма, её структура и функции.

Клетка – элементарная структурная, функциональная и генетическая единица в составе всех живых организмов.

Морфологическая характеристика клетки варьирует в зависимости от её функции. Процесс, в ходе которого клетки приобретают свои структурные и функциональные свойства и особенности (специализация) - клеточная дифференцировка. Молекулярно-генетические основы дифференцировки – синтез специфических и-РНК и на них – специфических белков.

Клетки всех типов характеризуются сходством общей организации и строения важнейших компонентов.

Каждая клетка эукариот состоит из двух основных компонентов: ядра и цитоплазмы, ограниченных клеточной мембраной (плазмолеммой).

 

Цитоплазма отделена от внешней среды плазматической мембраной и содержит:

органеллы

включения, погруженные в

клеточный матрикс (цитозоль, гиалоплазма).

Органеллыпостоянные компоненты цитоплазмы, имеющие характерную структуру и специализированные на выполнении определенных функций в клетке.

Включениянепостоянные компоненты цитоплазмы, образованные в результате накопления продуктов метаболизма клеток.

ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА (плазмолемма, цитолемма, внешняя клеточная мембрана )

Все клетки эукариотических организмов имеют пограничную мембрану – плазмолемму. Плазмолемма играет роль полупроницаемого селективного барьера, и с одной стороны, отделяет цитоплазму от окружающей клетку среды, а с другой – обеспечивает её связь с этой средой.

Функции плазмолеммы:

• поддержание формы клетки;

• регуляция переноса веществ и частиц в цитоплазму и из неё;

• распознавание данной клеткой других клеток и межклеточного вещества, прикрепление к ним;

• установление межклеточных контактов и передача информации от одной клетки к другой;

• взаимодействие с сигнальными молекулами (гормоны, медиаторы, цитокины) в связи с наличием на поверхности плазмалеммы специфических рецепторов к ним;

• осуществление движения клетки благодаря связи плазмалеммы с сократимыми элементами цитоскелета.

Строение плазмолеммы:

Молекулярное строение плазмолеммы описывается как жидкостно-мозаичная модель: липидный бислой, в который погружены молекулы белков (рис.1.).

 

Рис.1.

Толщина п лазмолеммы варьирует от 7,5 до 10 нм;

Липидный бислой представлен преимущественно молекулами фосфолипидов состоящими из двух длинных неполярных (гидрофобных) цепей жирных кислот и полярной (гидрофильной) головки. В мембране гидрофобные цепи обращены внутрь бислоя, а гидрофильные головки – кнаружи.

Химический состав плазмолеммы:

· липиды (фосфолипиды, сфинголипиды, холестерин);

· белки;

· олигосахариды, ковалентно связанные с некоторыми из этих липидов и белков (гликопротеины и гликолипиды).

Белки плазмолеммы. Мембранные белки составляют более 50% массы мембран. Они удерживаются в липидном бислое за счет гидрофобных взаимодействий с молекулами липидов.Белки обеспечивают специфические свойства мембраны и играют различную биологическую роль:

структурные молекулы;

ферменты;

переносчики;

рецепторы.

Мембранные белки подразделяются на 2 группы: интегральные и периферические:

периферические белки обычно находятся вне липидного бислоя и непрочно связаны с поверхностью мембраны;

интегральные белки представляют собой белки, либо полностью (собственно интегральные белки), либо частично (полуинтегральные белки) погруженные в липидный бислой. Часть белков целиком пронизывает всю мембрану (трансмембранные белки); они обеспечивают каналы, через которые транспортируется мелкие водорастворимые молекулы и ионы по обе стороны мембраны.

Белки распределены в пределах клеточноймембраны мозаично. Липиды и белки мембран не фиксированы в пределах мембраны, а обладают подвижностью: белки могут перемещаться в плоскости мембран, как бы «плавая» в толще липидного бислоя (как «айсберги в липидном «океане»).

Олигосахариды. Цепочки олигосахаридов, связанные с белковыми частицами (гликопротеины) или с липидами (гликолипиды), могут выступать за пределы наружной поверхности плазмолеммы, и образуют основу гликокаликса, надмембранного слоя, который выявляется под электронным микроскопом в виде рыхлого слоя умеренной электронной плотности.

Углеводные участки придают клетке отрицательный заряд и являются важным компонентом специфических молекул – рецепторов. Рецепторы обеспечивают такие важные процессы в жизнедеятельности клеток, как распознавание других клеток и межклеточного вещества, адгезивные взаимодействия, ответ на действие белковых гормонов, иммунный ответи.т.д.Гликокаликсявляется также местом концентрации многих ферментов, часть которых может образовываться не самой клеткой, а лишь адсорбироваться в слое гликокаликса.

Мембранный транспорт. Плазмолемма – место обмена материала между клеткой и окружающей клетку средой:

Механизмы мембранного транспорта (рис.2):

• пассивная диффузия;

• облегченная диффузия;

• активный транспорт;

• эндоцитоз.

Рис.2.

Пассивный транспорт – это процесс, который не требует затрат энергии, так как перенос мелких водорастворимых молекул (кислород, углекислый газ, вода) и части ионов осуществляется путем диффузии. Такой процесс малоспецифичен, и зависит от градиента концентрации транспортируемой молекулы.

Облегченный транспорт также зависит от градиента концентрации и обеспечивает перенос более крупных гидрофильных молекул, таких как молекулы глюкозы и аминокислот. Этот процесс пассивный, но требует присутствия белков-переносчиков, обладающих специфичностью в отношении транспортируемых молекул.

Активный транспорт - процесс, при котором перенос молекул осуществляется с помощью белков-переносчиков против электрохимического градиента. Для осуществления этого процесса необходимы затраты энергии, которая высвобождается за счет расщепления АТФ. Примером активного транспорта служит натриево-калиевый насос: посредством белка-переносчика Na+-K+-АТФ-азы ионы Na+ выводятся из цитоплазмы, а ионы К+ одновременно переносятся в неё.

Эндоцитоз - процесс транспорта макромолекул из внеклеточного пространства в клетку. При этом внеклеточный материал захватывается в области впячивания (инвагинации) плазмалеммы, края впячивания затем смыкаются, и таким образом формируется эндоцитозный пузырек (эндосома), окруженный мембраной.

Разновидностями эндоцитоза являются (рис.3):

пиноцитоз,

фагоцитоз,

рецепторно-опосредованный эндоцитоз.

 

Рис.3.

 

Пиноцитоз - захват и поглощение клеткой жидкости вместе с растворимыми в ней веществами («клетка пьёт»). В цитоплазме клетки пиноцитозные пузырьки обычно сливаются с первичными лизосомами, и их содержимое подвергается внутриклеточной обработке.

Фагоцитоз - захват и поглощение клеткой плотных частиц (бактерии, простейшие, грибки, поврежденные клетки, некоторые внеклеточные компоненты).

Фагоцитоз обычно сопровождается образованием выпячиваний цитоплазмы (псевдоподии, филоподии), которые охватывают плотный материал. Края цитоплазматических отростков смыкаются, и образуются фагосомы. Фагосомы сливаются с лизосомами, образуя фаголизосомы, где ферменты лизосом переваривают биополимеры до мономеров.

Рецепторно-опосредованный эндоцитоз. Рецепторы ко многим веществам, расположены на клеточной поверхности. Эти рецепторы связываются с лигандами (молекулами поглощаемого вещества с высоким сродством к рецептору).

Рецепторы, перемещаясь, могут скапливаться в особых областях, называемых окаймленными ямками. Вокруг таких ямок и образующихся из них окаймленных пузырьков образуется сетевидная оболочка, состоящая из нескольких полипептидов, главный из которых белок клатрин. Окаймленные эндоцитозные пузырьки переносят комплекс рецептор-лиганд внутрь клетки. В дальнейшем, после поглощения веществ, комплекс рецептор-лиганд расщепляется, и рецепторы возвращаются в плазмолемму. С помощью окаймленных пузырьков транспортируются иммуноглобулины, факторы роста, липопротеины низкой плотности (ЛНП).

Экзоцитоз – процесс обратный эндоцитозу. При этом мембранные экзоцитозные пузырьки, содержащие продукты собственного синтеза или непереваренные, вредные вещества, приближаются к плазмалемме и сливаются с ней своей мембраной, которая встраивается в плазмалемму - содержимое экзоцитозного пузырька выделяется во внеклеточное пространство.

Трансцитоз - процесс, объединяющий эндоцитоз и экзоцитоз. На одной поверхности клетки формируется эндоцитозный пузырёк, который переносится к противоположной поверхности клетки и, становясь экзоцитозным пузырьком, выделяет свое содержимое во внеклеточное пространство. Такой процесс характерен для клеток, выстилающих кровеносные сосуды, - эндотелиоцитов, особенно в капиллярах.

Во время эндоцитоза часть плазмолеммы становится эндоцитозным пузырьком; во время экзоцитоза, напротив, мембрана встраивается в плазмолемму. Это явление называется мембранным конвейером.

II. ЦИТОПЛАЗМА. Органеллы. Включения.

Органеллы – постоянно присутствующие в цитоплазме структуры, имеющие определенное строение и специализированные на выполнении определенных (специфических) функций в клетке.

Органеллы подразделяются на:

органеллы общего значения

специальные органеллы.

Органеллы общего значения имеются во всех клетках и необходимы для обеспечения их жизнедеятельности. К ним относятся:

митохондрии,

рибосомы

эндоплазматическая сеть (ЭПС),

комплекс Гольджи

лизосомы

пероксисомы,

клеточный центр

компоненты цитоскелета.

Специальные органеллы содержатся лишь в некоторых специализированных клетках, где они обеспечивают выполнение специальных функций.

К специальным органеллам относят реснички, жгутики, миофибриллы, акросома. Все специальные органеллы образуются при развитии клетки как производные органелл общего значения, так, например, акросома спермия является производным комплекса Гольджи, реснички и жгутики – микротрубочек цитоскелета и т.д

В состав многих органелл входит элементарная биологическая мембрана, поэтому органеллы подразделяются также на

мембранные и

немембранные.

Мембранные органеллы: митохондрии, ЭПС, комплекс Гольджи, лизосомы, пероксисомы;

Немембранные органеллы: рибосомы, клеточный центр, компоненты цитоскелета, микроворсинки, реснички, жгутики.

Элементарная биологическая мембрана, входящая в состав клеточных органелл, по своему строению представляет собой бислой липидов со встроенными белками и сходна со строением плазмолеммы, но не идентична ей. Толщина мембран внутриклеточных органелл несколько меньше (6-7,5 нм) в сравнении с плазмолеммой. Мембраны различных органелл существенно различаются по своим функциональным свойствам, благодаря присутствию разных структурных белков; белков, формирующих трансмембранные каналы или насосы, ферментов, рецепторов, а также липидов.

Благодаря мембранам внутри клетки выделяются отделы – компартменты – со своей особой биохимической средой, что позволяет обособить протекание несовместимых процессов внутри клетки.





Поделиться с друзьями:


Дата добавления: 2017-02-25; Мы поможем в написании ваших работ!; просмотров: 2967 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Бутерброд по-студенчески - кусок черного хлеба, а на него кусок белого. © Неизвестно
==> читать все изречения...

2412 - | 2331 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.029 с.