Электрохимическая коррозия
Разрушение металла под воздействием возникающих в коррозионной среде гальванических элементов называют электрохимической коррозией. Не следует путать с электрохимической коррозией коррозию однородного материала, например, ржавление железа или т.п. При электрохимической коррозии (наиболее частая форма коррозии) всегда требуется наличие электролита (Конденсат, дождевая вода и т. д.), с которым соприкасаются электроды - либо различные элементы структуры материала, либо два различных соприкасающихся материала с различающимися окислительно-восстановительными потенциалами. Если в воде растворены ионы солей, кислот, или т.п., электропроводность ее повышается, и скорость процесса увеличивается.
При соприкосновении двух металлов с различными окислительно-восстановительными потенциалами и погружении их в раствор электролита, например, дождевой воды с растворенным углекислым газом CO2, образуется гальванический элемент, так называемый коррозионный элемент. Он представляет собой не что иное, как замкнутую гальваническую ячейку. В ней происходит медленное растворение металлического материала с более низким окислительно-восстановительным потенциалом; второй электрод в паре, как правило, не коррозирует. Этот вид коррозии особо присущ металлам с высокими отрицательными потенциалами. Так, совсем небольшого количества примеси на поверхности металла с большим редокспотенциалом уже достаточно для возникновения коррозионного элемента. Особо подвержены риску места соприкосновения металлов с различными потенциалами, например, сварочные швы или заклёпки.
Если растворяющийся электрод коррозионно-стоек, процесс коррозии замедляется. На этом основана, например, защита железных изделий от коррозии путём лужения или оцинковки - олово или цинк имеют более отрицательный потенциал, чем железо, поэтому в такой паре железо восстанавливается, а олово или цинк должны коррозировать. Однако в связи с образованием на поверхности олова или цинка окисной плёнки процесс коррозии сильно замедляется. Коррозионный элемент может образовываться не только при соприкосновении двух различных металлов. Коррозионный элемент образуется и в случае одного металла, если, например, структура поверхности неоднородна.
Практика обследования железобетонных конструкций, соприкасающихся с грунтом, указывает на частные случаи разрушения арматуры блуждающими токами, которые появляются из-за утечек электроэнергии с рельсов электрифицированных железных дорог, работающих на постоянном токе, или других источников. В месте входа тока в конструкцию образуется катодная зона, а в месте выхода – анодная, или зона коррозии. Опыты показывают, что блуждающие токи распространяются на десятки километров в стороны от источника, практически не утрачивая силы тока, которая может достигать сотни ампер. Расчёты с использованием закона Фарадея показывают, что ток силою всего в 1-2А, стекая с конструкции, в течение года может уносить до 10кг железа. Обычно скорость разрушения арматуры блуждающими токами заметно превышает скорость разрушения от химической коррозии. Опасной для конструкции считается плотность тока При анализе агрессивных воздействий на железобетонные конструкции учитываются факторы, сопутствующие коррозии арматуры и, кроме того, разрабатываются соответствующие защитные мероприятия.
Коррозия бетона 1-го вида
Коррозия бетона I вида. Внешним ее признаком является налёт на поверхности бетона в месте испарения или фильтрации свободной воды. Коррозия вызывается фильтрацией мягкой воды сквозь толщину бетона и вымыванием из него гидрата окиси кальция: Ca(OH)2 (гашёная известь) и CaO (негашёная известь). В связи с этим происходит разрушение и других компонентов цементного камня: гидросиликатов, гидроалюминатов, гидроферритов, так как их стабильное существование возможно лишь в растворах Ca(OH)2 определённой концентрации. Описанный процесс называется выщелачиванием цементного камня. По результатам исследований [2] выщелачивание из бетона 16% извести приводит к снижению его прочности примерно на 20%, при 30%-ном выщелачивании прочность снижается уже на 50%. Полное исчерпание прочности бетона наступает при 40-50%-ной потере извести.
Этот вид коррозии может протекать с разной скоростью. Например, в плотном массивном бетоне гидросооружений процесс коррозии бетона идет медленно и результат процессов может сказаться через несколько десятилетий. Но, например, в тонкостенных бетонных оболочках тоннелей вымывание гидроксида кальция и разложение составляющих цементного камня происходит очень быстро и уже через несколько лет может вызвать необходимость ремонтных работ.
Если через бетон начинает фильтроваться вода, то разложение гидросиликатов и отчасти гидроалюминатов кальция, содержащегося в цементном камне, ускоряется, и тогда из бетона выносится водой значительное количество гидроксида кальция. Бетон становится высокопористым и теряет прочность.
Следует учитывать, что если приток мягкой воды незначительный и она испаряется на поверхности бетона, то гидрат окиси кальция не вымывается, а остаётся в бетоне, уплотняет его, тем самым прекращая его дальнейшую фильтрацию. Этот процесс называется самозалечиванием бетона.
Коррозии I вида особо подвержены бетоны на портландцементе. Стойкими оказываются бетоны на пуццолановом портландцементе и шлакопортландцементе с гидравлическими добавкими.