ОКРАСКА ПО МЕТОДУ ГРАМА.
1. На фиксированный мазок нанести карболово-спиртовой раствор генцианового фиолетового через полоску фильтровальной бумаги. Через 1-2 мин снять ее, а краситель слить. 2. Нанести р-р люголя на -2 мин (йод) 3. Обесцветить этиловым спиртом в течении 30-60 с до прекращения отхождения фиолетовых струек красителя. 4. Промыть водой 5. Докрасить водным р-ом фуксина в течении 1-2 мин, промыть водой, высушить и микроскопировать.
* Грамположительные бактерии окр. в темно-фиолетовый цвет, грамотрицательные- в красный.
ОКРАСКА ПО МЕТОДУ ЦИЛЯ-НИЛЬСЕНА
1. На фиксированный мазок нанести карболовый р-р фуксина через полоску фильтровальной бумаги и подогреть до появления паров в течении 3-5 мин 2. Снять бумагу, провыть мазок водой 3. Нанести 5% р-р серной кислоты или 3% р-р смеси спирта с хлороводородной кислотой на 1-2 мин для обесцвечивания. 4. Промыть водой 5. Докрасить мазок водным р-ом метиленового синего в течении 3-5 мин 6. Промыть водой, высушить и микроскопировать
* Некислоустойчивые – обесцвечиваются и окр. метиленовым синим в голубой цвет, а кислоустойчивые остаются окрашенными фуксином в красный
ОКРАСКА СПОР ПО АУЕСКИ
1. На нефиксированный мазок нанести 0,5% р-р хлороводородной кис-ты и подогреть на пламени в течении 2-3 мин 2. Кислоту слить, препарат промыть водой, просушить и фиксировать над пламенем. Затем окрасить по Цилю-Нельсену.
* Споры бактерий приобретают красный цвет, а вегетативные формы - синий.
ОКРАСКА ПО МЕТОДУ НЕЙССЕРА
1.На фиксированный мазок нанести ацетат синьки Нейссера на 2-3 мин 2. Добавить р-р Люголя на10-30 сек 3. Промыть препарат водой 4. Мазок докрасить водным раствором везувина или хрезоидина в течение 0,5-1 мин 5. Промыть препарат водой, высушить и микроскопировать
* Зерна волютина окрашиваются в темно-миний цвет, цитоплазма – в желтый цвет
ОКРАСКА ПО МЕТОДУ БУРРИ-ГИНСА
1. Смешать каплю взвеси микробных клеток с каплей туши и при помощи стекла со шлифовальным краем сделать мазок таким же образом, как мазок из крови, высушить и фиксировать 2. на мазок нанести водный р-р фуксина на 1-2 мин 3. Промыть водой, высушить на воздухе и микроскопировать.
* Бактерии окр. в красный цвет, а неокрашенные капсулы выделяются на черно-розовом фоне
Морфология грибов.
Грибы и простейшие имеют четко ограниченное ядро и относятся к эукариотам. Грибы крупнее бактерий, в эволюционном плане близки к растениям (наличие клеточной стенки, содержащей хитин или целлюлозу, вакуолей с клеточным соком, неспособность к перемещению, видимое движение цитоплазмы). Ядерный материал грибов отделен от цитоплазмы ядерной мембраной. Дрожжевые грибы образуют отдельные овальные клетки. Плесневые грибы формируют клеточные нитеподобные структуры- гифы. Мицелий - переплетение гифов- основная морфологическая структура. При вегетативном размножении образуются специализированные репродуктивные структуры- споры- конидии. Они могут располагаться в специализированных вместилищах- спорангиях (эндоспоры) или отшнуровываться от плодоносящих гиф (экзоспоры). Актиномицеты - формы бактерий, имеющие истинный, не имеющий перегородок мицелий. Мицелиальный (в виде ветвящихся нитей) рост этих грамположительных бактерий придает им внешнее сходство с грибами. Это сходство усиливается вследствие наличия у высших форм актиномицетов наружных неполовых спор, которые называются конидиями.В отличие от грибов, актиномицеты имеют прокариотическое строение клетки, не содержат в клеточной стенке хитина или целлюлозы, размножаются только бесполым путем. Представители рода Mycobacterium, в который входят возбудители туберкулеза, являются кислотоустойчивыми микроорганизмами, плохо воспринимающими краски. Их высокая резистентность во внешней среде, кислотоустойчивость и ряд других свойств связан с особым составом клеточной стенки, большим содержанием липидов и воска.У представителей родов Actinomyces и Nocardia мицелий выражен в значительно большей степени, чем у микобактерий, однако в старых культурах они также проявляют тенденцию фрагментироваться на отдельные клетки неправильной формы. Микроорганизмы рода Actinomyces являются анаэробами, Nocardia - аэробами, многие из которых проявляют кислотоустойчивость. Микроорганизмы, относящиеся к высшим актиномицетам (рода Streptomyces, Micromonospora) образуют мицелий и размножаются наружными неполовыми спорами или конидиями. Обычным местом обитания для большинства из них является почва.
1) Архимицеты – наиболее примитивные, микроскопических размеров; зачаточный мицелий или нет мицелия; тело представляет собой голый комочек протоплазмы, который покрывается оболочкой в процессе превращения в спорангий; размножаются бесполым путем посредством подвижных спор – зооспор, развивающихся в спорангие. Явл. внутриклеточными паразитами низших и высших растений. Z.B. Ольпидиум Olpidium brassicae; Синхитриум Synchytrium endobioticum.
2) Фикомицеты – хорошо развитый одноклеточный, многоядерный мицелий; бесполое размножение происходит при помощи неподвижных спорангиеспор или подвижных зооспор, при половом процессе образуется зигота. Z.B. Фитофтора Phytophthora infenstans; Мукор Mucor; Ризопус Rhizopus/
3) Аскомицеты – сумчатые грибы, мицелий многоклеточный, состоит из многоядерных клеток. Бесполым путем размножаются при помощи конидий; при половом процессе образуются аскоспоры в сумках (асках). Голосумчатые – не образуют плодовые тела Z.B. эндомицес Enlomyces. Плодосумчатые - образуют плодовые тела Z.B. пенициллиум Penicillium; аспергилловые Aspergillus niger, awamori.
4) Базидиомицеты – бесполое размножение редко; основными органами размножения являются базидии с базидиоспорами. а) Одноклеточные базидии: базидии развиваются слоями на плодовых телах Z.B. шляпочные, трутовики, домовые грибы. б) Многоклеточные базидии – большинство не имеет плодовых тел; Z.B. головневые грибы; ржавчинные грибы. Явл. основной массой съедобных грибов р. Boletus, Вешенки, шампиньоны – немикаридные, не нуждаются в симбиозе с высшими растениями, могут выращиваться на экстрактах.
5) Несовершенные грибы – многоклет. грибы, половое размножение не обнаружено; боль-во размножается конидиями, некоторые образуют оидии, другие способны к почкованию или не имеют спец. органов размножения. Z.B. фузариум, ботритис, оидиум и др.
Применение: 1) экологическое (цикл С); 2) отрицательная роль: многие грибы вызывают биоразрушения, выделяя экзоферменты (резина, древесина), 3) биотехнологическое: получение орг. к-т, антибиотиков, сыров, ферментов.
Морфология простейших.
Имеют эукариотическое строение клетки и значительно более сложную функциональную и морфологическую организацию по сравнению с бактериями и грибами. Снаружи тело простейших покрывает эластичная и ригидная пелликула, образованная внешним слоем цитоплазмы. У некоторых видов клеточная мембрана может включать опорные фибриллы и даже минеральный скелет. Простейшие могут иметь несколько ядер. Многие простейшие способны активно двигаться за счет псевдоподий, жгутиков или ресничек. Жизненный цикл паразитических простейших нередко включает образование промежуточных форм в различных хозяевах. Основные классы простейших: саркодовые или амебы- наиболее просто устроенные простейшие, споровики (малярийные плазмодии, токсоплазмы, пневмоцисты, бабезии), жгутиконосцы (трихомонады, лейшмании), инфузории. Простейшие очень широко распространены, достаточно сказать, что малярийными плазмодиями и токсоплазмами в сумме поражено до трети населения земного шара. Всего известно около 7 тысяч видов простейших, патогенных для различных растений, животных, человека, непатогенных- во много раз больше. Простейших изучает наука протозоология.
20. Ферменты бактерий. Использование ферментативной активности бактерий при их идентификации
Микроорганизмы синтезируют различные ферменты - специфические белковые катализаторы. У бактерий обнаружены ферменты 6 основных классов.
1.Оксидоредуктазы- катализируют окислительно- восстановительные реакции.
2.Трансферазы- осуществляют реакции переноса групп атомов.
3.Гидролазы- осущесвляют гидролитическое расщепление различных соединений.
4.Лиазы- катализируют реакции отщепления от субстрата химической группы негидролитическим путем с образованием двойной связи или присоединения химической группы к двойным связям.
5.Лигазы или синтетазы-обеспечивают соединение двух молекул, сопряженное с расщеплением пирофосфатной связи в молекуле АТФ или аналогичного трифосфата.
6.Изомеразы - определяют пространственное расположение групп элементов.
В соответствии с механизмами генетического контроля у бактерий выделяют три группы ферментов:
- конститутивные, синтез которых происходит постоянно;
- индуцибельные, синтез которых индуцируется наличием субстрата;
- репрессибельные, синтез которых подавляется избытком продукта реакции.
Ферменты бактерий делят на экзо- и эндоферменты. Экзоферменты выделяются во внешнюю среду, осуществляют процессы расщепления высокомолекулярных органических соединений. Способность к образованию экзоферментов во многом определяет инвазивность бактерий- способность проникать через слизистые, соединительнотканные и другие тканевые барьеры.
В бактериологии для дифференциации микроорганизмов по биохимическим свойствам основное значение часто имеют конечные продукты и результаты действия ферментов. В соответствии с этим существует микробиологическая (рабочая) классификация ферментов.
1.Сахаролитические.
2.Протеолитические.
3.Аутолитические.
4.Окислительно- восстановительные.
5.Ферменты патогенности (вирулентности).
Ферментный состав клетки определяется геномом и является достаточно постоянным признаком. Знание биохимических свойств микроорганизмов позволяет идентифицировать их по набору ферментов. Основные продукты ферментирования углеводов и белков- кислота, газ, индол, сероводород, хотя реальный спектр для различных микроорганизмов намного более обширный.Основные ферменты вирулентности- гиалуронидаза, плазмокоагулаза, лецитиназа, нейраминидаза, ДНК-аза. Определение ферментов патогенности имеет значение при идентификации ряда микроорганизмов и выявления их роли в патологии. Ряд ферментов микроорганизмов широко используется в медицине и биологии для получения различных веществ (аутолитические, протеолитические), в генной инженерии (рестриктазы, лигазы).