Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


астные случаи поверхностных акустических волн




еоретические основы построения математических моделей поверхностных акустических волн в упругих средах

сновные понятия

Для построения математических моделей поверхностных акустических волн в упругих средах необходимо ознакомится с основными понятиями в данной области.

Среда называется упругой, или линейной, если её деформация пропорциональна приложенной.

Упругими, или механическими волнами называются механические возмущения (деформации), распространяющиеся в упругих средах.

Звуковые или акустические волны — это волны, которые распространяются в упругой среде, характеризующиеся слабыми возмущениями. Это механические колебания с малыми амплитудами. Отсюда следует, что акустические волны являются упругими.

Наиболее распространёнными типами упругих волн в твёрдых телах являются:

· продольные волны — волны с колебанием частиц вдоль направления распространения волны;

· поперечные волны — волны с колебанием частиц перпендикулярно направлению распространения волны;

· поверхностные волны (например, волны Рэлея) — волны с колебанием частиц по эллипсам вдоль поверхности тела;

· волны Лэмба — волны в тонких пластинах;

· изгибные волны — распространение колебаний деформации изгиба в стержнях или пластинах, длина волны которых много больше толщины стержня или пластины.

 

При распространении акустической волны можно наблюдать следующие явления:

Резонанс – резкое возрастание амплитуды вынужденных колебаний при совпадении частоты изменения внешней силы, действующей на систему, с частотой свободных колебаний.

Интерференция – сложение в пространстве двух (или нескольких) волн, при котором образуется постоянное во времени распределение амплитуды результирующих колебаний в различных точках пространства.

Дифракция – отклонение от прямолинейного распространения волн, огибание волнами препятствий.

Угол отражения волны от поверхности равен углу падения (согласно принципу Гюйгенса).

Поверхностные акустические волны (ПАВ) — упругие волны, распространяющиеся вдоль поверхности твёрдого тела или вдоль границы с другими средами. ПАВ подразделяются на два типа: с вертикальной поляризацией и с горизонтальной поляризацией (волны Лява).

Возникновение и распространение акустических волн связано с упругими свойствами сред. Все реальные тела деформируемые. В случае твердых тел существует два предельных случая: деформации упругие и деформации пластические. Пределом упругости называют силу, до которой деформация будет упругой. Для идеально упругих тел между действующими сипами и деформациями существует однозначная связь, описываемая законом Гука: F=kDx.

Существует широкий класс твердых тел, для которых при малых деформациях этот закон приближенно справедлив. Существуют изотропные и анизотропные тела. Одно и то же тело может вести себя как изотропное по отношению к одним телам и воздействиям, и как анизотропное – по отношению к другим. По отношению к взаимодействиям, связанным с упругими свойствами все монокристаллические тела ведут себя как анизотропные.

астные случаи поверхностных акустических волн

К наиболее часто встречающимся частным случаям поверхностных волн можно отнести следующие:

1. Волны Рэлея (или рэлеевские), в классическом понимании распространяющиеся вдоль границы упругого полупространства с вакуумом или достаточно разреженной газовой средой. Энергия этих волн локализована в поверхностном слое толщиной от l до 2l, где l - длина волны. Частицы в волне Рэлея движутся по эллипсам, большая полуось w которых перпендикулярна границе, а малая u - параллельна направлению распространения волны (рис. 1).

 

Рис. 1 Поверхностная упругая волна Рэлея на свободной границе твердого тела

 

Обозначения:

х - направление распространения волны;

u,w - компоненты смещения частиц;

кривые изображают ход изменения амплитуды смещений при удалении от границы.

Фазовая скорость волн Рэлея c R» 0.9 c t, где c t - фазовая скорость плоской поперечной волны.

2. Затухающие волны рэлеевского типа на границе твердого тела с жидкостью, при условии, что фазовая скорость в жидкости с L < с R в твердом теле (что справедливо почти для всех реальных сред). Эта волна непрерывно излучает энергию в жидкость, образуя в ней отходящую от границы неоднородную волну (рис. 2).

 

 

Рис. 2 Поверхностная упругая затухающая волна рэлеевского типа на границе твердого тела и жидкости

Обозначения:

х - направление распространения волны;

u,w - компоненты смещения частиц;

кривые изображают ход изменения амплитуды смещений при удалении от границы;

наклонные линии - фронты отходящей волны.

Фазовая скорость этой волны с точностью до процентов равна с R , коэффициент затухания на длине волны al ~ 0.1. Распределение по глубине смещений и напряжений - такое же, как в волне Рэлея.

3. Незатухающая волна с вертикальной поляризацией, бегущая по границе жидкости и твердого тела со скоростью, меньшей с L (и, соответственно, меньшей, чем скорости продольной и поперечной волн в твердом теле). Структура этой ПВ совсем другая, чем у рэлеевской волны. Она состоит из слабо неоднородной волны в жидкости, амплитуда которой медленно убывает при удалении от границы, и двух сильно неоднородных продольной и поперечной волн в твердом теле (рис. 3).

Рис. 3 Незатухающая ПВ на границе твердого тела и жидкости

Обозначения:

х - направление распространения волны;

u,w - компоненты смещения частиц;

кривые изображают ход изменения амплитуды смещений при удалении от границы.

Энергия волны и движение частиц локализованы в основном в жидкости.

4. Волна Стонли, распространяющаяся вдоль плоской границы двух твердых сред, модули упругости и плотности которых не сильно различаются. Такая волна состоит (рис. 4) как бы из двух рэлеевских волн - по одной в каждой среде.

Рис. 4 Поверхностная упругая волна Стонли на границе двух твердых сред

Обозначения:

х - направление распространения волны;

u,w - компоненты смещения частиц;

кривые изображают ход изменения амплитуды смещений при удалении от границы.

Вертикальные и горизонтальные компоненты смещений в каждой среде убывают при удалении от границы так, что энергия волны оказывается сосредоточенной в двух граничных слоях толщиной ~ l. Фазовая скорость волны Стонли меньше значений фазовых скоростей продольных и поперечных волн в обеих граничащих средах.

5.Волны Лява - ПВ с горизонтальной поляризацией, которые могут распространяться на границе твердого полупространства с твердым слоем (рис. 5).

 

Рис. 5 Поверхностная упругая волна Лява на границе "твердое полупространство - твердый слой"

Обозначения:

х - направление распространения волны;

кривые изображают ход изменения амплитуды смещений при удалении от границы.

Эти волны - чисто поперечные: в них имеется только одна компонента смещения v, а упругая деформация в волне Лява представляет собой чистый сдвиг. Смещения в слое (индекс 1) и в полупространстве (индекс 2) описываются выражениями:

v 1 = (A ¤ cos(s 1 h)) cos(s 1 (h - z))sin( w t - kx);

v 2 = A Чexp (s 2 z) sin( w t - kx), (1)

где t - время;

w - круговая частота;

s 1 = (k t12 - k 2)1/2;

s 2 = (k 2 - k t22)1/2;

k - волновое число волны Лява;

k t1, k t2 - волновые числа поперечных волн в слое и в полупространстве соответственно;

h - толщина слоя;

А - произвольная постоянная.

 

Из выражений для v 1 и v 2 видно, что смещения в слое распределены по косинусу, а в полупространстве экспоненциально убывают с глубиной. Для волн Лява характерна дисперсия скорости. При малых толщинах слоя фазовая скорость волны Лява стремится к фазовой скорости объемной поперечной волны в полупространстве. При w h ¤ c t2 >>1 волны Лява существуют в виде нескольких модификаций, каждая из которых соответствует нормальной волне определенного порядка.

К ПВ относят и волны на свободной поверхности жидкости или на границе раздела двух несмешивающихся жидкостей. Такие ПВ возникают под влиянием внешнего воздействия, например, ветра, выводящего поверхность жидкости из равновесного состояния. В этом случае, однако, упругие волны существовать не могут. В зависимости от природы возвращающих сил различают 3 типа ПВ: гравитационные, обусловленные в основном силой тяжести; капиллярные, обусловленные в основном силами поверхностного натяжения; гравитационно-капиллярные.


 





Поделиться с друзьями:


Дата добавления: 2017-02-11; Мы поможем в написании ваших работ!; просмотров: 587 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент может не знать в двух случаях: не знал, или забыл. © Неизвестно
==> читать все изречения...

2781 - | 2343 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.