Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


анговая корреляция – основная идея, коэффициенты ранговой корреляции, их смысл.




Коэффициент ранговой корреляции Спирмена. Если потребуется установить связь между двумя признаками, значения которых в генеральной совокупности распределены не по нормальному закону, т. е. предположение о том, что двумерная выборка (xi и yi) получена из двумерной нормальной генеральной совокупности, не принимается, то можно воспользоваться коэффициентом ранговой корреляции Спирмена (): где dx и dy – ранги показателей xi и yi; n – число коррелируемых пар.

 

Коэффициент ранговой корреляции также имеет пределы 1 и –1. Если ранги одинаковы для всех значений xi и yi, то все разности рангов (dx - dy) = 0 и = 1. Если ранги xi и yi расположены в обратном порядке, то = -1. Таким образом, коэффициент ранговой корреляции является мерой совпадения рангов значений xi и yi. Когда ранги всех значений xi и yi строго совпадают или расположены в обратном порядке, между случайными величинами Х и Y существует функциональная зависимость, причем эта зависимость не обязательно линейная, как в случае с коэффициентом линейной корреляции Браве-Пирсона, а может быть любой монотонной зависимостью (т. е. постоянно возрастающей или постоянно убывающей зависимостью). Если зависимость монотонно возрастающая,то ранги значений xi и yi совпадают и = 1; если зависимость монотонно убывающая, то ранги обратны и = –1. Следовательно, коэффициент ранговой корреляции является мерой любой монотонной зависимости между случайными величинами Х и Y.Из формулы видно, что для вычисления необходимо сначала проставить ранги (dx и dy) показателей xi и yi, найти разности рангов (dx - dy) для каждой пары показателей и квадраты этих разностей (dx - dy)2. Зная эти значения, находятся суммы , учитывая, что всегда равна нулю. Затем, вычислив значение , необходимо определить достоверность найденного коэффициента корреляции, сравнив его фактическое значение с табличным. Если , то можно говорить о том, что между признаками наблюдается достоверная взаимосвязь. Если , то между признаками наблюдается недостоверная корреляционная взаимосвязь.Коэффициент ранговой корреляции Спирмена вычисляется значительно проще, чем коэффициент корреляции Браве-Пирсона при одних и тех же исходных данных, поскольку при вычислении используются ранги, представляющие собой обычно целые числа.Коэффициент ранговой корреляции целесообразно использовать в следующих случаях: - если экспериментальные данные представляют собой точно измеренные значения признаков Х и Y и требуется быстро найти приближенную оценку коэффициента корреляции. Тогда даже в случае двумерного нормального распределения генеральной совокупности можно воспользоваться коэффициентом ранговой корреляции вместо точного коэффициента корреляции Браве-Пирсона. Вычисления будут существенно проще, а точность оценки генерального параметра р с помощью коэффициента при больших объемах выборки составляет 91,2% по отношению к точности оценки по коэффициенту корреляций; - когда значения xi и (или) yi заданы в порядковой шкале (например, оценки судей в баллах, места на соревнованиях, количественные градации качественных признаков), т. е. когда признаки не могут быть точно измерены, но их наблюдаемые значения могут быть расставлены в определенном порядке.

32.Основные задачи регрессионного ана-лиза. Идея МНК получения уравнения регрессии. Понятие о нелинейной и множественной корреляции. Наряду с анализом связей между двумя рядами данных можно проводить анализ многомерных корреляционных связей. Наиболее простым случаем нахождения подобной зависимости является вычисление коэффициентов множественной корреляции между тремя переменными X, Y и Z. В соответствии с числом переменных вычисляются три коэффициента множественной корреляции. Собственно говоря, коэффициент множественной корреляции оценивает тесноту линейной связи одной переменной, например X, с двумя остальными, Y и Z, и обозначается как rx(yz). При оценке тесноты линейной связи переменной Y с переменными Х и Z, коэффициент множественной корреляции обозначается как ry(xz)Вычисление коэффициентов множественной корреляции базируется на коэффициентах линейной корреляции между переменными Х и Y — rxy, Х и Z, — rxz, У и Z, — ryz. Для вычисления одного из коэффициентов множественной корреляции, например rx(yz) используется следующая формула: где rxy, rxz, ryz — коэффициенты линейной корреляции между парами переменных Х и Y, Х и Z, Y и Z. Коэффициент множественной корреляции принимает значения от 0 до 1. Значимость этого коэффициента оценивают по величине t-критерия Стьюдента с числом степеней свободы k = n - 3. Для применения множественного коэффициента корреляции необходимо соблюдать следующие условия: 1. Сравниваемые переменные должны быть измерены в шкале интервалов или отношений. 2. Предполагается, что все переменные имеют нормальный закон распределения. 3. Число варьирующих признаков в сравниваемых переменных должно быть одинаковым.





Поделиться с друзьями:


Дата добавления: 2017-02-11; Мы поможем в написании ваших работ!; просмотров: 500 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Слабые люди всю жизнь стараются быть не хуже других. Сильным во что бы то ни стало нужно стать лучше всех. © Борис Акунин
==> читать все изречения...

2382 - | 2282 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.