Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Предмет и специфика математики




Введение

 

Вряд ли вызывает сомнение правомерность утверждения: математика нужна всем вне зависимости от рода занятий и профессии. Однако для разных людей необходима и разная математика: для продавца, может быть, достаточно знания простейших арифметических операций, а для истинного естествоиспытателя обязательно нужны глубокие знания современной математики, поскольку только на их основе возможно открытие законов природы и познание ее гармонического развития. Потребность изучения математики в большинстве случаев обусловливается практической деятельностью и стремлением человека познать окружающий мир. В то же время, иногда к познанию математики влекут и субъективные побуждения. Об одном из них Сенека писал: «Александр, царь Македонский, принялся изучать геометрию, — несчастный! — только с тем, чтобы узнать, как мала земля, чью ничтожную часть он захватил. Несчастным я называю его потому, что он должен был понять ложность своего прозвища, ибо можно ли быть великим на ничтожном пространстве». Простейшие в современном понимании математические начала, включающие элементарный арифметический счет и простейшие геометрические измерения, служат отправной точкой естествознания. «Тот, кто хочет решить вопросы естественных наук без помощи математики, ставит неразрешимую задачу. Следует измерять то, что измеримо, и делать измеримым то, что таковым не является», — утверждал выдающийся итальянский физик и астроном, один из основоположников естествознания Галилео Галилей (1564—1642) [3, с. 31].


Предмет и специфика математики

Высшее назначение математики – находить порядок в хаосе, который

нас окружает.

Норберт Винер

В рассматриваемую эпоху математические знания развивались в следующих основных направлениях.

Во-первых, расширяются пределы считаемых предметов, появляются словесные обозначения для чисел свыше 100 единиц — сначала до 1000, а затем до 10 000 и далее. Во-вторых, образуются позиционные системы счисления. Это стало возможным благодаря совершенствованию умения считать не единицами, а сразу некоторым набором единиц (4,5, чаще всего 10).

В-третьих, формируются простейшие геометрические абстракции — прямой линии, угла, объема и др. В-четвертых, зарождаются древнейшие математические науки — арифметика и геометрия [4, c. 86].

Математика имеет для естествознания непреходящее значение. Математика – наука о количественных отношениях и пространственных формах действительного мира. Приложения математики разнообразны. Принципиально область применения математического метода не ограничена: все виды движения материи могут изучаться математически.

Однако роль и значение математического метода в различных случаях

различна. Важнейшим условием возникновения и существования точного

естествознания является использование научного эксперимента, а также

математического аппарата исследований. Но, говоря о важности применения математики в естествознании, мы не должны абсолютизировать ее роль. Математические формулы сами по себе абстрактны и лишены конкретного содержания. Математика является лишь орудием, или средством, физического исследования, но и экономика и лингвистика и т.п., согласованные с научным наблюдением и экспериментом, физические исследования наполняют математические формулы конкретным содержанием [5, c 82].

Математика выполняет в естествознании эвристическую, или познавательную, роль. Интерес математика заключен в изобретении многообразий упорядоченных математических конструктов. Если многообразие математических конструктов не упорядочено, т.е. невозможно их сопоставление друг с другом, то работа математика теряет всякий смысл. Дабы этого не случилось, математик внимательно следит за тем, чтобы математическая теория была непротиворечивой. Математическая теория называется непротиворечивой, если в ней не наличествуют два или больше взаимно исключающих предложения. Представим, что совет одной деревни так определил обязанности парикмахера этой деревни: брить всех мужчин деревни, которые не бреются сами, и только этих мужчин. Должен ли он брить самого себя? Если да, то он будет относиться к тем, кто бреется сам, а тех, кто бреется сам, он не должен брить. Если нет, он будет принадлежать к тем, кто не бреется сам, и, значит, он должен будет брить себя. Мы приходим, таким образом, к заключению, что этот парикмахер бреет себя в том и только в том случае, когда он не бреет себя. Это, разумеется, невозможно. Рассуждение о парикмахере опирается на допущение, что такой парикмахер существует. Полученное противоречие означает, что это допущение ложно и нет такого жителя деревни, который брил бы всех тех и только тех ее жителей, которые не бреются сами [5, c 90].

В математике широко используются символьные записи, а не громоздкие словесные выражения. Замена естественного языка математическими символами называется формализацией. В естествознании чувства, мысли, слова и предложения несут информацию об изучаемых природных явлениях, они обращены в сторону природы. В математике дело обстоит принципиально по-другому, здесь математические конструкты «не смотрят по сторонам», они соотносятся исключительно друг с другом.

Итак, математика, поскольку в ней не используется критерий подтверждаемости, отличается от естествознания, но вместе с тем используется в нем. Единство математики и естествознания, опора на математику в экспериментальных науках приводит к тому, что она порой зачисляется в естествознание. Часто говорят, что есть «чистая» математика и прикладная математика. Утверждается также, что математика изучает объекты реального мира, но абстрагируется от их конкретного содержания [5, c. 98].





Поделиться с друзьями:


Дата добавления: 2017-02-11; Мы поможем в написании ваших работ!; просмотров: 665 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Настоящая ответственность бывает только личной. © Фазиль Искандер
==> читать все изречения...

2341 - | 2066 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.