Лекция 11. Имитационное моделирование
Имитационная модель - модель, позволяющая имитировать поведение реальной системы на ЭВМ при заданных исходных данных. Имитация представляет собой численный метод проведения на ЭВМ экспериментов с математическими моделями, описывающими поведение системы в течение заданного или формируемого периода времени (нельзя сразу получить конечный результат).
Имитационными обычно называют модели предприятий, экологические и социальные модели.
С учетом последнего замечания, имитационная модель рассматривается нами специальная форма математической модели, в которой:
· декомпозиция системы на компоненты производится с учетом структуры проектируемого или изучаемого объекта;
· в качестве законов поведения, могут использоваться экспериментальные данные, полученные в результате натурных экспериментов;
· поведение системы во времени иллюстрируется заданными динамическими образами.
Имитационное моделирование на цифровых вычислительных машинах является одним из наиболее мощных средств исследования, в частности, сложных динамических систем. Как и любое компьютерное моделирование, оно дает возможность проводить вычислительные эксперименты с еще только проектируемыми системами и изучать системы, натурные эксперименты с которыми, из-за соображений безопасности или дороговизны, не целесообразны. В тоже время, благодаря своей близости по форме к физическому моделированию, это метод исследования доступен более широкому кругу пользователей.
В настоящее время, когда компьютерная промышленность, предлагает разнообразнейшие средства моделирования, любой квалифицированный инженер, технолог или менеджер должен уметь уже не просто моделировать сложные объекты, а моделировать их с помощью современных технологий, реализованных в форме графических сред или пакетов визуального моделирования.
Простая динамическая система
Под простейшей динамической системой обычно понимается система, поведение которой задается совокупностью обыкновенных дифференциальных уравнений в форме Коши с достаточно гладкими правыми частями, обеспечивающими существование и единственность решения. Примерами объектов, поведение которых может быть описано дифференциальными уравнениями, является, например, тело, брошенное под углом к горизонту, или известный из школьного задачника бассейн с двумя трубами, через которые вливается и выливается вода. Решение систем уравнений в форме Коши, разрешенных относительно первых производных, - традиционная численная задача. Разработанные в последние годы программные реализации численных методов не только обеспечивают заданные требования к погрешности решения, но стараются самостоятельно определить тип (вычислительную сложность), решаемой задачи.
Более сложной является модель, представленная системой обыкновенных дифференциальных уравнений в форме Коши и нелинейных алгебраических уравнений, сопровождаемая набором вспомогательных формул. Предварительная подготовка для численного решения в данном случае минимальна: нужно проверить равно ли число уравнений числу неизвестных, проверить согласованность начальных условий и провести сортировку формул в правильном порядке (для замены их операторами присваивания). Такую систему будем называть простой динамической системой.
Большинство технических и природных систем являются более сложными. Мы будем выделять структурную и поведенческую сложность моделируемых объектов.
Структурно сложная динамическая система
Как уже отмечалось, структура современных моделей часто соответствует структуру изучаемого объекта. В основе таких моделей лежит элемент (блок), со скрытой от внешнего наблюдателя внутренней структурой. Глядя на такой блок со стороны, можно увидеть только специальные переменные, называемые в общем случае контактными. Как говорят программисты, блок инкапсулирует свои свойства. Структурно сложная модель состоит из множества блоков, взаимодействующих между собой через функциональные связи между видимыми извне переменными. Структура такой системы обычно является иерархической. Множество элементов системы может, вообще говоря, изменяться в процессе функционирования системы. Как правило, элементы сложной системы характеризуются различными физическими принципами действия, что, в конце концов, не столь заметно в итоговой математической модели, но чрезвычайно важно на этапе построения модели.
Неориентированные связи позволяют производить декомпозицию исходного объекта на "физические" компоненты с достаточно простыми законами поведения, а затем собирать их в единую систему, практически также, как мы собираем сложный физический прибор из отдельных блоков. В этом неоспоримое преимущество данного подхода. Недостатком является сложная и не всегда за приемлемое время осуществимая процедура автоматического построения итоговой математической модели.