Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Понятие функции. Отображение множеств

Понятие множества

В математике встречаются самые разнообразные множества. Можно говорить о множестве граней многогранника, точек на прямой, множестве натуральных чисел и т.д. Понятие множества относится к числу первоначальных понятий, которые не определяются через другие, более простые. Вместо слова ''множество'' иногда говорят ''совокуп-ность'', ''собрание'' предметов и т.д. Предметы, составляющие данное множество, называются элементами данного множества.

Теория множеств посвящена в основном изучению именно бесконечных множеств. Теория конечных множеств называется иногда комбинаторикой.

Но простейшие свойства множеств, те, о которых мы только и будем здесь говорить, в большинстве случаев в равной мере относятся как к конечным, так и к бесконечным множествам.

Заметим, что в математике допускается к рассмотрению множество, не содержащее элементов – пустое множество. Запись а Î Х означает, что а есть элемент множества Х.

Определение. Множество В называется подмножеством множества А, если каждый элемент множества В является в то же время элементом множества А.

Каждый отдельный элемент множества А образует подмножество, состоящего из этого одного элемента. Кроме того, пустое множество является подмножеством всякого множества.

Подмножество множества А называется несобственным, если оно совпадает с множеством А.

Если множество В есть подмножество множества А, то говорим, что В содержится в А и обозначаем В Í А. Подмножество В множества А называется собственным подмножеством, если В не пусто и не совпадает с А (т.е. имеется элемент множества А, не содержащийся в В).

Операции над множествами

Пусть А и В – произвольные множества.

Определение. Объединением двух множеств А и В называется множество С = АÈВ, состоящее из всех элементов, принадлежащих хотя бы одному из множеств А и В. (см. рис. 1).

Аналогично определяется объединение любого (конечного или бесконечного) числа множеств: если А i – произвольные множества, то их объединение есть совокупность элементов, каждый из которых принадлежит хотя бы одному из множеств А i.

 
 


Определение. Пересечением множеств А и В называется множество С = АÇВ, состоящее из всех элементов, принадлежащих как А, так и В (см. рис. 2). Пересечением любого (конечного или бесконечного) числа множеств А i называется множество элементов, принадлежащих каждому из множеств А i.

Операции объединения и пересечения множеств по определению коммутативны и ассоциативны, т.е.

АÈВ = В È А, (А ÈВ) ÈС = А È (В È С),

А Ç В = В Ç А, (А Ç В) Ç С = А Ç (В Ç С).

Кроме того, они взаимно дистрибутивны:

(А È В) Ç С = (А Ç С) È (В Ç С), (1)

(А Ç В) È С = (А È С) Ç (В È С). (2)

Определение. Разностью множеств А и В называется множество тех элементов из А, которые не содержатся в В (рис. 3).

 
 

 


Понятие функции. Отображение множеств

Пусть М и N – два произвольных множества.

Определение. Говорят, что на М определена функция f, принимающая значение из N, если каждому элементу x Î М поставлен в соответствие один и только один элемент y Î N. При этом М называется областью определения данной функции, а N – её областью значений.

Для множеств произвольной природы вместо термина «функция» часто пользуются термином «отображение», говоря об отображении одного множества в другое.

Если а элемент из М, то соответствующий ему элемент b = f (а) из N называется образом а при отображении f. Совокупность всех тех элементов а из М, образом которых является данный элемент b Î N, называется прообразом (или точнее полным прообразом) элемента b и обозначается f –1(b).

Пусть А – некоторое множество из М; совокупность { f (а): а Î А} всех элементов вида f (а), где а Î А, называется образом А и обозначается f (А). В свою очередь для каждого множества В из N определяется его полный прообраз f –1(В), а именно: f –1(В) есть совокупность всех тех элементов из М, образы которых принадлежат В.

Определение. Будем говорить, что f есть отображение множества М на множество N, если f (М) = N; такое отображение называют сюръекцией. В общем случае, т.е. когда f (М) Ì N, говорят, что f есть отображение в N. Если для любых двух различных элементов х 1 и х 2 из М их образы y 1 = f (x 1) и y 2 = f (x 2) также различны, то f называется инъекцией. Отображение f: М®N, которое одновременно является сюръекцией и инъекцией, называется взаимно однозначным соответствием между М и N.



<== предыдущая лекция | следующая лекция ==>
Общеинженерное проектирование слайд 19 | Бесконечно малые функции и их свойства
Поделиться с друзьями:


Дата добавления: 2017-02-11; Мы поможем в написании ваших работ!; просмотров: 332 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Бутерброд по-студенчески - кусок черного хлеба, а на него кусок белого. © Неизвестно
==> читать все изречения...

2438 - | 2357 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.