Рассмотрим некоторые особенности вычислений в полях вычетов. Найдем, например, определитель , элементы которого суть вычеты из поля
(Z3, +3, × 3). Если действовать "по науке", надо писать
d =(1 × 3 1) –3 (2 × 3 2),
где x –3 y = x +3 (– y). Вычисляя шаг за шагом, получим
1 × 3 1 = 1, 2 × 3 2 = 1, 1 –3 1 = 0.
Можно, однако, поступить проще. Будем считать элементы определителя обычными целыми числами из кольца Z, тогда d =1 × 1–2 × 2= –3.
Как найти для целого числа из Z соответствующий вычет из Z n? Для этого надо к числу прибавить (или отнять от него) величину, кратную n, чтобы результат принадлежал множеству вычетов Z n ={0,1,¼, n –1}. В данном случае прибавим 3 и получим –3+3=0 – тот же результат.
В дальнейшем станем действовать аналогично, к тому же не будем педантично ставить индекс + n, × n около символов операций, обозначая их просто + и
×, если значение индекса n ясно из контекста.
Рассмотрим решение системы линейных уравнений над полем вычетов.
Пример. Решим над тремя полями: Q, Z3, Z5 систему уравнений A × X = B, где . т.е.
Заметим, что коэффициенты системы (0, 1 и 2), включая свободные члены, можно рассматривать не только как числа (т.е. элементы поля Q), но и как элементы интересующих нас конечных полей Z3 и Z5. В противном случае постановку задачи пришлось бы как-то изменять.
Решать систему будем по правилу Крамера. Вычислим над полем Q четыре определителя:
.
Значения неизвестных найдем по формулам Крамера: .
Приведем значения определителей в поле вычетов Z3={0,1,2}, получим: D=0, D x =2, D y =2, D z =2. Видим, что над этим полем система несовместна.
Приведем значения определителей в поле вычетов Z5={0,1,2,3,4}: D=2, D x =4, D y =1, D z =4. Значения неизвестных снова найдем по формулам Крамера: . Как понимать найденное значение неизвестной ? Дробь не является элементом поля Z5, поэтому ее надо рассматривать как выражение, которое необходимо вычислить согласно правилам действий в этом поле: (поскольку произведение 2×3=6, а 6 в поле Z5 переходит в 1). Итак, решение системы уравнений над полем Z5 таково: x =2, y =3, z =2.
Сделаем проверку (символом Þ обозначен переход от целых чисел к вычетам по модулю 5). Первое уравнение: 1×2+2×2=6 Þ 1, второе уравнение: 1×3+2×2=7 Þ 2, третье уравнение: 2×2+1×2=6 Þ 1. Видим, что найденные значения вычетов удовлетворяют системе уравнений над полем Z5.
Решим ту же систему над полем Z3 методом Гаусса. Составим расширенную матрицу: . Если бы мы решали систему над полем рациональных чисел Q, то первым шагом выполнили бы операцию (3)–2×(1). В поле Z3 коэффициенту –2 соответствует вычет 1, поэтому выполним операцию (3)+1×(1). В 1-ом столбце имеем 2+1×1=3Þ0, во 2-ом столбце сохранится 0, в третьем столбце 1+1×2=3Þ0, в столбце свободных членов 1+1×1=2, так что . В алгебраической форме 3-е уравнение этой системы имеет вид 0× x +0× y +0× z =2. Очевидно, что оно не имеет решения, поэтому система над полем Z3 несовместна.
Найдем решение той же системы над полем Z5 методом Гаусса. Вместо операции (3)–2×(1), с которой начинается решение этой системы над полем рациональных чисел Q, выполним операцию (3)+3×(1), поскольку в поле Z5 коэффициенту –2 соответствует вычет 3. В 1-ом столбце получим 2+3×1=5Þ0, во 2-ом столбце сохранится 0, в третьем, в 3-ем столбце имеем 1+3×2=7Þ2, в столбце свободных членов 1+3×1=4. Таким образом, получим . 3-ю строку этой матрицы можно сократить (разделить) на 2: .
Теперь выполним операции (1)+3×(3) и (2)+3×(3) – в 1-й и во 2-й строках 3-го столбца получится 2+3×1=5Þ0, остальные элементы этих строк сохраняться: .
Видим, что получилось решение, ранее найденное по правилу Крамера: x =2, y =3, z =2.