Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


общий вид систем линейных неоднородных алгебраических уравнений понятия решения. фундаментальной системы решений. условия совместимости.




Рассмотрим произвольную совместную неоднородную систему линейных алгебраических уравнений:

Пусть у нее в общем случае , то есть имеется бесконечное множество решений.

Теорема 4.1. Сумма любого решения неоднородной системы линейных алгебраических уравнений с любым решением соответствующей ей однородной системы является решением неоднородной системы.

Доказательство. Возьмем произвольное решение неоднородной системы

и произвольное решение соответствующей ей однородной системы

Рассмотрим их сумму .

Если данная сумма является решением неоднородной системы, то она должна превратить в тождество любое ее уравнение:

что и требовалось доказать.

Теорема 4.2. Разность любых двух решений неоднородной системы линейных алгебраических уравнений является решением соответствующей однородной системы.

Доказательство. Возьмем два произвольных решения неоднородной системы линейных алгебраических уравнений:

и .

Составим их разность.

Подставим полученную разность в любое уравнение неоднородной системы:

Так как левая часть уравнения обратилась в ноль, значит, является решением однородной системы, что и требовалось доказать.

Из теоремы 4.2 следует, что если , то . Иначе говоря, взяв какое-то одно решение неоднородной системы линейных алгебраических уравнений и прибавляя к нему разные решения соответствующей однородной системы , получим разные решения неоднородной системы, что подтверждается теоремой 4.1. Следствие. Общее решение неоднородной системы линейных алгебраических уравнений равно сумме какого-то частного ее решения и общего решения соответствующей однородной системы.

Теорема Кронекера – Капелли.

Пусть дана произвольная система m линейных уравнений с n неизвестными

Исчерпывающий ответ на вопрос о совместности этой системы дает теорема Кронекера-Капелли.

Примем ее без доказательства.

Правила практического разыскания всех решений совместной системы линейных уравнений вытекают из следующих теорем.

11. Система трех линейных неоднородных алгебраических уравнений: определение и метод Крамера решения. Примеры.Система линейных алгебраических уравнений (линейная система, также употребляются аббревиатуры СЛАУ, СЛУ) — система уравнений, каждое уравнение в котором является линейным — алгебраическим уравнением первой степени.
Общий вид системы линейных алгебраических уравнений:

Здесь — количество уравнений, а — количество переменных, — неизвестные, которые надо определить, к оэффициенты и свободные члены предполагаются известными. Индексы коэффициентов в системах линейных уравнений () формируются по следующему соглашению: первый индекс () обозначает номер уравнения, второй () — номер переменной, при которой стоит этот коэффициент[1]. Система называется однородной, если все её свободные члены равны нулю (), иначе —неоднородной. Ме́тод Крамера (правило Крамера) — способ решения систем линейных алгебраических уравнений с числом уравнений равным числу неизвестных с ненулевым главным определителем матрицы коэффициентов системы(причём для таких уравнений решение существует и единственно)

Пример.Система линейных уравнений с вещественными коэффициентами: Определители:





Поделиться с друзьями:


Дата добавления: 2017-02-11; Мы поможем в написании ваших работ!; просмотров: 1321 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинайте делать все, что вы можете сделать – и даже то, о чем можете хотя бы мечтать. В смелости гений, сила и магия. © Иоганн Вольфганг Гете
==> читать все изречения...

2312 - | 2095 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.