Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Фиктивные переменные во множественной регрессии




До сих пор в качестве факторов рассматривались экономические переменные, принимающие количественные значения в некотором интервале. Вместе с тем может оказаться необходимым включить в модель фактор, имеющий два или более качественных уровней. Это могут быть разного рода атрибутивные признаки, такие, например, как профессия, пол, образование, климатические условия, принадлежность к определенному региону. Чтобы ввести такие переменные в регрессионную модель, им должны быть присвоены те или иные цифровые метки, т.е. качественные переменные преобразованы в количественные. Такого вида сконструированные переменные в эконометрике принято называть фиктивными переменными. В отечественной литературе можно встретить термин «структурные переменные».

Рассмотрим применение фиктивных переменных для функции спроса. Предположим, что по группе лиц мужского и женского пола изучается линейная зависимость потребления кофе от цены. В общем виде для совокупности обследуемых уравнение регрессии имеет вид:

,

где – количество потребляемого кофе; – цена.

Аналогичные уравнения могут быть найдены отдельно для лиц мужского пола: и женского пола: .

Различия в потреблении кофе проявятся в различии средних и . Вместе с тем сила влияния на может быть одинаковой, т. е. . В этом случае возможно построение общего уравнения регрессии с включением в него фактора «пол» в виде фиктивной переменной. Объединяя уравнения и и вводя фиктивные переменные, можно прийти к следующему выражению:

,

где и – фиктивные переменные, принимающие значения:

.

В общем уравнении регрессии зависимая переменная у рассматривается как функция не только цены, но и пола (, ). Переменная рассматривается как дихотомическая переменная, принимающая всего два значения: 1 и 0. При этом когда =1, то =0 и, наоборот, при =0 переменная =1.

Для лиц мужского пола, когда и , объединенное уравнение регрессии составит: , а для лиц женского пола, когда и , . Иными словами, различия в потреблении для лиц мужского и женского пола вызваны различиями свободных членов уравнения регрессии: . Параметр является общим для всей совокупности лиц, как для мужчин, так и для женщин.

Следует иметь в виду, что при введении фиктивных переменных и в модель применение МНК для оценивания параметров и приведет к вырожденной матрице исходных данных, а следовательно, и к невозможности получения их оценок. Объясняется это тем, что при использовании МНК в данном уравнении появляется свободный член, т. е. yравнение примет вид

.

Ранее говорилось только о качественном факторе, который имел только два состояния, которым и соответствовали обозначения 1 и 0. Если же число градаций качественного признака-фактора превышает два, то в модель вводится несколько фиктивных переменных, число которых должно быть меньше числа качественных градаций. Только при соблюдении этого положения матрица исходных фиктивных переменных не будет линейно зависима и возможна оценка параметров модели.

В отдельных случаях может оказаться необходимым введение двух и более групп фиктивных переменных, т. е. двух и более качественных факторов, каждый из которых может иметь несколько градаций. Например, при изучении потребления некоторого товара наряду с факторами, имеющими количественное выражение (цена, доход на одного члена семьи, цена на взаимозаменяемые товары и др.), учитываются и качественные факторы. С их помощью оцениваются различия в потреблении отдельных социальных групп населения, дифференциация в потреблении по полу, национальному составу и др. При построении такой модели из каждой группы фиктивных переменных следует исключить по одной переменной. Так, если модель будет включать три социальные группы, три возрастные категории и ряд экономических переменных, то она примет вид:

,

где – потребление;

– экономические (количественные) переменные.

Фиктивные переменные широко используются для оценки сезонных различий в потреблении. Учет сезонного фактора при построении динамических моделей рассмотрен позже.

Фиктивные переменные могут вводиться не только в линейные, но и в нелинейные модели, приводимые путем преобразований к линейному виду.

Включение в модель фиктивных переменных может иметь цель отразить в модели неоднородность совокупности. Однако нельзя рассматривать фиктивные переменные как панацею при применении методов регрессии к неоднородным данным.

До сих пор мы рассматривали фиктивные переменные как факторы, которые используются в регрессионной модели наряду с количественными переменными. Вместе с тем возможна регрессия только на фиктивных переменных. Например, изучается дифференциация заработной платы рабочих высокой квалификации по регионам страны. Модель заработной платы может иметь вид:

,

где – средняя заработная плата рабочих высокой квалификации по отдельным предприятиям;

Поскольку последний район, указанный в модели, обозначен , то в исследование включено район.

Ввиду того, что факторы данной регрессионной модели выражены как дихотомические признаки, параметры модели имеют свою специфику по сравнению с традиционной их интерпретацией. Параметр представляет собой среднее значение результативного признака для базовой группы . Параметр характеризует разность средних уровней результативного признака для группы 1 и базовой группы 0. Соответственно параметр представляет собой разность между и . Иными словами, коэффициенты при отражают величину эффекта соответствующей группы фактора . Рассмотрим применение данной модели на следующем условном примере.





Поделиться с друзьями:


Дата добавления: 2017-01-28; Мы поможем в написании ваших работ!; просмотров: 424 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинать всегда стоит с того, что сеет сомнения. © Борис Стругацкий
==> читать все изречения...

2320 - | 2074 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.