Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Оценка параметров уравнения множественной регрессии




Параметры уравнения множественной регрессии оцениваются, как и в парной регрессии, методом наименьших квадратов (МНК). При его применении строится система нормальных уравнений, решение которой и позволяет получить оценки параметров регрессии.

Так, для уравнения система нормальных уравнений составит:

Ее решение может быть осуществлено методом Крамера:

, , …, ,

где – определитель системы;

– частные определители.

Возможен и иной подход к определению параметров множественной регрессии, когда на основе матрицы парных коэффициентов корреляции строится уравнение регрессии в стандартизованном масштабе:

,

где – стандартизованные переменные: , ,

для которых среднее значение равно нулю: , а среднее квадратическое отклонение равно единице: ;

– стандартизованные коэффициенты регрессии.

Применяя МНК к уравнению множественной регрессии в стандартизованном масштабе, после соответствующих преобразований получим систему нормальных уравнений вида

Решая ее методом определителей, найдем параметры – стандартизованные коэффициенты регрессии ( -коэффициенты).

Стандартизованные коэффициенты регрессии показывают, на сколько сигм изменится в среднем результат, если соответствующий фактор изменится на одну сигму при неизменном среднем уровне других факторов. В силу того, что все переменные заданы как центрированные и нормированные, стандартизованные коэффициенты регрессии сравнимы между собой. Сравнивая их друг с другом, можно ранжировать факторы по силе их воздействия на результат. В этом основное достоинство стандартизованных коэффициентов регрессии в отличие от коэффициентов «чистой» регрессии, которые несравнимы между собой.

Пример. Пусть функция издержек производства (тыс. руб.) характеризуется уравнением вида

,

где основные производственные фонды (тыс. руб.);

– численность занятых в производстве (чел.).

Анализируя его, мы видим, что при той же занятости дополнительный рост стоимости основных производственных фондов на 1 тыс. руб. влечет за собой увеличение затрат в среднем на 1,2 тыс. руб., а увеличение численности занятых на одного человека способствует при той же технической оснащенности предприятий росту затрат в среднем на 1,1 тыс. руб. Однако это не означает, что фактор , оказывает более сильное влияние на издержки производства по сравнению с фактором . Такое сравнение возможно, если обратиться к уравнению регрессии в стандартизованном масштабе. Предположим, оно выглядит так:

.

Это означает, что с ростом фактора на одну сигму при неизменной численности занятых затраты на продукцию увеличиваются в среднем на 0,5 сигмы. Так как (0,5 < 0,8), то можно заключить, что большее влияние оказывает на производство продукции фактор , а не ; как кажется из уравнения регрессии в натуральном масштабе.

В парной зависимости стандартизованный коэффициент регрессии есть не что иное, как линейный коэффициент корреляции . Подобно тому, как в парной зависимости коэффициенты регрессии и корреляции связаны между собой, так и во множественной регрессии коэффициенты «чистой» регрессии связаны со стандартизованными коэффициентами регрессии , а именно:

.

Это позволяет от уравнения регрессии в стандартизованном масштабе

переходить к уравнению регрессии в натуральном масштабе переменных:

Параметр определяется как

Рассмотренный смысл стандартизованных коэффициентов регрессии позволяет их использовать при отсеве факторов – из модели исключаются факторы с наименьшим значением .

Для уравнения регрессии в стандартизованном масштабе -коэффициенты могут быть определены по формулам, вытекающим из решения системы нормальных уравнений:

Компьютерные программы построения уравнения множественной регрессии в зависимости от использованного в них алгоритма решения позволяют получить либо только уравнение регрессии для исходных данных, либо, кроме того, уравнение регрессии в стандартизованном масштабе.

При нелинейной зависимости признаков, приводимой к линейному виду, параметры множественной регрессии также определяются МНК с той лишь разницей, что он используется не к исходной информации, а к преобразованным данным.





Поделиться с друзьями:


Дата добавления: 2017-01-28; Мы поможем в написании ваших работ!; просмотров: 582 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Два самых важных дня в твоей жизни: день, когда ты появился на свет, и день, когда понял, зачем. © Марк Твен
==> читать все изречения...

2253 - | 2077 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.