Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Графический метод решения задачи линейного программирования




 

Если задача содержит только две переменные, а система ограничений задана в виде неравенств, то её можно решить графическим методом.

Графический метод решения ЗЛП состоит из следующих этапов.

1. Строится область допустимых решений (ОДР) ЗЛП.

2. Строится вектор-градиент целевой функции (вектор, координатами которого являются частные производные функции) с приложением в начале координат – .

3. Линия уровня C1x1+C2x2 = а (а – постоянная величина) - прямая, перпендикулярная вектору–градиенту – передвигается в направлении этого вектора в случае максимизации f(x1,x2) до тех пор, пока не покинет пределов ОДР. Предельная точка (или точки) области при этом движении и является точкой максимума f(x1,x2).

4. Для нахождения ее координат достаточно решить систему из двух уравнений прямых, получаемых из соответствующих ограничений и дающих в пересечении точку максимума. Значение f(x1,x2), найденное в полученной точке, является максимальным.

При минимизации f(x1,x2) линия уровня перемещается в направлении, противоположном вектору-градиенту. Если прямая при своем движении не покидает ОДР, то целевая функция f(x1,x2) не ограничена на максимум (в задаче максимизации) или минимум (в задаче минимизации).

Если линия уровня параллельна какой-либо прямой из ограничений задачи, то оптимальное значение целевой функции будет достигаться в любой точке этой прямой.

Пример. Найти максимальное значение функции f=2x1 + 3x2 при условиях

Построим область допустимых значений:

1) первое ограничение x1 + 3x2 £ 18; прямая x1 + 3x2 = 18 пересекает оси координат в точках (0; 6) (18; 0); неравенству соответствует полуплоскость, содержащая данную прямую и лежащая ниже неё (контрольная точка(0; 0), 0 + 3*0 < 18 принадлежит полуплоскости);

2) второе ограничение 2 x1 + x2 £ 16: прямая 2x1 + x2 = 16 пересекает оси координат в точках (0; 16) (8; 0); неравенству соответствует полуплоскость, содержащая данную прямую и лежащая ниже неё (контрольная точка (0; 0), 2*0 + 0 <16 принадлежит полуплоскости);

3) неравенству x2 £ 5 соответствует полуплоскость, содержащая прямую x2 = 5 и лежащая ниже неё.

4) x1 ³ 0 - правее ОX2;

5) x2 ³ 0 - выше ОX1.

Вектор-градиент имеет координаты .

Построим линии уровня 2 x1 + 3 x2 = а. При а = 0 получим прямую 2x1 + 3x2 = 0, проходящую через начало координат, перпендикулярно вектору-градиенту. Так как задача на максимум, то передвигаем линию уровня в направлении градиента. Предельной точкой (последней из области допустимых решений, с которой соприкасается линия уровня) является точка С. Значит, в ней достигается максимум функции f (рис. 1).

Найдём её координаты. Для этого решим систему, составленную из уравнений прямых пересекающихся в точке С (I и II):

Таким образом, получим x1 = 6, x2 = 4, fmax = 2*6 + 3*4 = 24.

 
 

Рис. 1.

 





Поделиться с друзьями:


Дата добавления: 2017-01-28; Мы поможем в написании ваших работ!; просмотров: 329 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинать всегда стоит с того, что сеет сомнения. © Борис Стругацкий
==> читать все изречения...

2321 - | 2074 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.