Действие ядерного оружия на человека и ОМП
Поражающими факторами ядерного взрыва являются:
Ударная волна, световое излучение, проникающая радиация, радиационное заражение, электромагнитный импульс.
При рассмотрении поражающих факторов ядерного взрыва необходимо учитывать, что энергия взрыва при расщеплении 1 гр. ядерного вещества эквивалентна энергии взрыва 20 тонн тринитротолуола.
Ударная волна.
Основным параметром ударной волны является избыточное давление во фронте ударной волны. Обозначается: Единицы измерения: внесистемная килограмм силы (кГс\см2); в системе СИ - кПа.
Соотношение 1 кГс/см2 (1 атм.) = 100 кПа.
Различают 4 зоны поражения: (∆Р – избыточное давление)
1. –слабые разрушения ∆Рф1 = 10-20 кПа;
2. –средние разрушения ∆Рф2 = 20-30 кПа;
3. –сильные разрушения ∆Рф3 = 30-50 кПа;
4. –полные разрушения ∆Рф4 = более 50 кПа.
Рассмотрим пример: допустим, вы находитесь в зоне № 4, в укрытии за металлической дверью; пусть избыточное давление во фронте ударной волны - 10 кПа (0,1 атм). Площадь двери 2 кв.м.(2х1) или 20000 см.кв. Это значит, что давление на дверь будет равно 2 тонны (20000 х 0,1 атм).
Световое излучение.
Основным параметром является световой импульс.
Единицы измерения: внесистемная – кал/см2 в системе СИ- кДж/м2. Соотношение между ними: 1 кал/см2 = 42 кДж /м2.
Различают 3 зоны поражения:
1 зона Исв1 = 100-200 кДж/м2 – зона отельных пожаров;
2 зона Исв2 = 200-600 кДж/ м2 – зона сплошных пожаров;
3 зона Исв3 = более 600 кДж/м2 – пожары в завалах.
О температурах, возникающих в зонах облучения можно судить на примере японца во время взрыва ядерной бомбы в Нагасаки в 2 мировой войне. На оплавленной стене от него остался след силуэта.
Электромагнитный импульс
Представляет собой мощное короткое электромагнитное излучение, поражающее главным образом электрическую и электронную аппаратуру.
Проникающая радиация.
Представляет собой поток гамма- излучения, нейтронов, бета и альфа частиц. Время действия проникающей радиации не превышает 10- 15 сек. с момента взрыва.
Радиоактивное заражение.
Радиоактивное заражение происходит за счет продуктов взрыва – это более 200 радиоактивных изотопов 36 химических элементов, которые излучают альфа, бета и гамма излучение.
Альфа частицы – это поток ядер гелия, скорость распространения которых порядка 20000 км/сек, проникающая способность их мала и одежда человека является достаточно надежной, эффективной защитой от этого вида излучения. Бета – частицы более легкие. Это поток электронов, позитронов, проникающая способность которых больше, чем альфа частиц. Плотная одежда является хорошим экраном для человека, но ионизирующая их способность в сотни раз выше, чем у гамма лучей. Наибольшей проникающей радиацией обладают, гамма лучи – электромагнитное излучение, сопровождающее процесс распада и изменения свойств атома. Полная защита от потока гамма излучения пока отсутствует. Защита осуществляется толстостенными конструкциями бетона или свинцовых защитных экранов. Зона радиоактивного заражения образуется в районе ядерного взрыва на следе радиоактивного облака. Степень радиоактивного заражения характеризуется уровнем радиации на определенное время после взрыва и экспозиционной дозой радиации, полученной за время от начала заражения до полного распада радиоактивных веществ.
Доза излучения – та доза, которую может получить человек при радиоактивном заражении.
Влияние радиоактивных излучений на организм человека.
Характеристика лучевой болезни (ЛБ). Существуют 4 степени ЛБ (см. табл.)
Ионизирующее излучение оказывает биологическое действие на живые клетки, ткани и на весь организм человека в целом. Биологическое действиеионизирующего излучения по силе и характеру значительно превышает биологические эффекты других видов излучений - светового или теплового.
Первый этап биологического действия начинается с поглощения энергии ионизирующего излучения тканями организма. Этот физический процесс взаимодействия излучения с тканями протекает в очень короткое время, порядка миллионных долей секунды при ядерном взрыве, за счет мощного нейтронного потока и гамма-излучения; и может протекать длительное время при достаточно близком контакте человека с радиоактивными веществами за счет альфа-, бета- и гамма-излучения.
При поглощении энергии ионизирующего излучения в тканях живых организмов возникают химически активные радикалы, претерпевают изменения белковые молекулы, происходят изменения в структуре молекул дезоксирибонуклеиновой кислоты (ДНК). Белки, расщепляясь, создают новые формы белков, которые являются токсичными для организма и даже при прекращении действия ионизирующего излучения организм продолжает создавать эти новые формы. Изменение строения генов, отвечающих за наследственные признаки организма, приводит к формированиюгенетически неправильных кодов, которое сказывается на будущем потомстве, приводя к рождению физически и умственно неполноценных детей. Изменения в структуре молекул белков приводят к раковымзаболеваниям различных органов человеческого тела, в том числе и крови (лейкомия).
Особенностью биологического воздействия ионизирующего излучения является наличие скрытого (латентного) периода. Для первичной реакции человеческого организма, при достаточно большой дозе облучения, характерны тошнота, рвота, головная боль, общая слабость и недомогание. Тяжесть состояния человека зависит от величины поглощенной дозы излучения.
В настоящее время приняты следующие нормы облучения (предельно допустимые дозы – ПДД):
- естественный радиационный фон земли – 0,01 миллирентген/час;
- допускается однократная доза внешнего облучения 3 БЭР в любые 13 недель при условии, что годовая норма не будет превышать 5 БЭР;
- суммарная доза к 30 годам не должна превышать 60 БЭР;
- каждое внешнее облучение дозой до 10 БЭР подлежит внимательному медицинскому рассмотрению;
- при дозе облучения до 25 БЭР человек направляется на медицинское обследование.
единицы радиоактивности и дозы излучения
Для ознакомления с некоторыми понятиями радиационной дозиметрии, широко применяемыми в гражданской защите, в особенности в последнее время, целесообразно вспомнить их описание и единицы измерения. В последние годы в научной литературе единицы радиоактивности даются в Международной системе (СИ). Тем не менее, в научной литературе минувших лет в практике ликвидации последствий ядерных аварий, при градуировании шкал дозиметрических приборов применяют не только единицы СИ, а и внесистемные единицы. Учитывая это, для удобства пользования в учебнике одновременно подаются единицы в системе СИ и внесистемные.
Количество радиоактивных веществ в среде (степень загрязнения) часто бывает очень маленьким, что практически не дает возможности определить их весовое содержание. Именно поэтому мерой радиоактивных веществ является не вес, а активность радиоизотопов.
Активностью радиоактивного элемента является количество атомных распадов, которые происходят в 1 секунду. Таким образом, активность радиоактивного элемента определяется числом распадов за единицу времени, она характеризует абсолютную скорость радиоактивного распада радионуклида. Активность радиоактивного вещества пропорциональна его количеству и обратно пропорциональна периоду полураспада. Количество радиоактивного вещества свидетельствует о его активности, т.е. о количестве атомов, которые распадаются за 1 секунду.
За единицу активности (активность нуклида в радиоактивном источнике) принята единица в системе СИ - беккерель (Бк, Bq) - это такое количество радиоактивного вещества, в котором происходит 1 акт распада за 1 с; производные единицы: килобеккерель (кБк) – 1000 Бк, мегобеккерель (МБк) – 1000000 Бк. Внесистемная единица активности - кюри (Ки) - такое количество радиоактивного вещества, в котором происходит 37 млрд. актов распада за 1 с. и производные единицы: 1 мКи = 10-3 Ки, 1 мкКи = 10-6 Ки, 1 нКи = 10-9 Ки.
Соотношение между единицами: Бк = 2,7∙10-11 Ки; 1Бк = 1 расп/с; 1 Ки = 3,7∙1010 Бк = 3,7∙ 1010 расп/с.
За единицу радиоактивности вещества (удельную весовую активность) принята единица беккерель на килограмм (Бк/кг), а внесистемная - кюри на килограмм (Ки/кг).
Единицей радиоактивности жидкой и газообразной среды - удельной объемной активностью – является единица в системе СИ - беккерель на литр (Бк/л), а внесистемная единица - кюри на литр (Ки/л).
За единицу радиоактивности площади - удельную плотность загрязнения в системе СИ – принят беккерель на квадратный километр (Бк/км2), производные: кБк/м2; внесистемная единица - кюри на квадратный километр (Ки/км2).
Ионизирующее свойство радиации в воздухе характеризуют дозой излучения.
Доза излучения - это количество энергии радиоактивных излучений, поглощенных единицей объема среды, которая облучается. Доза излучения (или облучение) является мерой поражающего действия радиоактивных излучений на организм человека, животных и растений. Она может накапливаться за разное время, а биологическое поражение от облучения зависит от величины дозы и от времени ее накопления.
Различают экспозиционную, поглощенную и эквивалентную дозы излучения.
Экспозиционной дозой называют дозу излучения, которая характеризует ионизационный эффект рентгеновского и гамма-излучений в воздухе. Это доза, которая характеризует источник и созданное им радиоактивное поле. Экспозиционную дозу излучения гамма-лучей измеряют внесистемной единицей - рентгеном (Р, R). Один рентген - это такая доза рентгеновского или гамма-излучения, которая в 1 см3 сухого воздуха при температуре 0 °С и давлении 760 мм рт. ст. создает 2 млрд. пар ионов (или точнее 2,08·109). На практике применяют и производные единицы: миллирентген (1 Р = 1000 мР; 1 мР = 10-3 Р) и микрорентген (1 Р = 1000000 мкР; 1 мкР = 10-6 Р). В системе СИ экспозиционная доза измеряется в кулонах на килограмм (Кл/кг, C/kg). Это единица экспозиционной дозы излучения, при которой в каждом килограмме воздуха образуются ионы с общим зарядом, который равняется 1 кулону.
Единица облучения в системе СИ равняется 3876 Р. Экспозиционная доза в рентгенах довольно надежно характеризует опасность действия ионизирующих излучений при общем и равномерном облучении организма человека или животного. Соотношения между единицей экспозиционной дозы системы СИ и внесистемной: 1 Кл/кг = 3876 Р или 1 Кл/кг = 3,88∙103 Р; 1 Р = 2,58∙10-4 Кл/кг. Рентген определяет количество энергии (дозу), которое получает объект, но не характеризует время, за которое она получена. Для оценки действия ионизирующего излучения за единицу времени применяется понятие " мощность дозы ".
Мощность экспозиционной дозы (уровень радиации) - это интенсивность излучения, которое получается за единицу времени и характеризует скорость накопления дозы. Единицей мощности экспозиционной дозы в системе СИ является ампер на килограмм (А/кг, A/kg), а внесистемной единицей для измерения излучений в воздухе является рентген в час (Р/ч, R/h), рентген в секунду (Р/с, R/s) или производные единицы: миллирентген в час (мР/ч), микрорентген в час (мкР/ч). Соотношение между единицей системы СИ и внесистемной единицей мощности экспозиционной дозы: 1 А/кг = 1 Кл/(кг·с) = 3876 Р/с, 1 Р/с = 2,58·10-4 А/кг = 2,58·10-4 Кл/(кг·с). Рентген как единица измерения по своему определению является количественной характеристикой гамма- или рентгеновского излучения и ничего не говорит о количестве энергии, поглощенной объемом, который облучается. Поэтому для оценки степени влияния излучения на организм введено понятие " поглощенная доза ".
Поглощенная доза - это количество энергии разных видов ионизирующих излучений, поглощенных единицей массы вещества. Единица поглощенной дозы излучения тканями организма в системе СИ - джоуль на килограмм (Дж/кг, J/kg). Дж/кг - это количество энергии любого вида ионизирующего излучения, поглощенного 1 килограммом тела. Кроме этого, единицей измерения поглощенной дозы является грей (Гр.). Еще применяют внесистемную единицу - рад (rad) (это сокращение от англ. radіatіon absorbent dose) - поглощенная доза любого излучения, при которой количество энергии, поглощенной 1 г вещества, которое облучается, соответствует 100 эрг; 1 рад = 0,01 Дж/кг = 100 эрг поглощенного вещества в тканях. Соотношение между единицей поглощенной дозы системы СИ и внесистемной единицей: 1 Гр = 1 Дж/кг, 1 Дж/кг = 100 рад, 1 Гр = 100 рад, 1 рад = 0,01 Гр = 0,01 Дж/кг.
Для определения дозы облучения биологических объектов измеряют дозу в воздухе в Р, а потом расчетным путем находят поглощенную дозу в радах. Из-за того, что доза излучения 1 Р в воздухе энергетически эквивалентна 88 эрг/г, то поглощенная энергия в радах для воздуха составляет 88/100 = 0,88 рад. Таким образом, если доза излучения в воздухе равняется 1 Р, то поглощенная доза будет 0,88 рад.
Поглощенная доза более точно определяет влияние ионизирующих излучений на биологические ткани организма, которые имеют разные атомный состав и плотность. Есть отдельная зависимость между поглощенной дозой и радиационным эффектом: чем больше поглощенная доза, тем больше радиационный эффект. Поглощенная доза характеризует радиационный эффект для всех видов органических и химических тел, кроме живых организмов.
Единицей мощности поглощенной дозы в системе СИ является грей в секунду (Гр/с) и джоуль на килограмм за секунду (Дж/(кг·с), J/(kg·s)), а внесистемной - рад в секунду (рад/с, rad/s); соотношение между ними: 1 Гр/с = 1 Дж/(кг·с); 1 Гр/с = 100 рад/с, 1 рад/с = 0,01 Гр/с.
Но поглощенная доза не учитывает то, что влияние на организм такой же дозы, но разных излучений неодинаково. Например, альфа-излучение в 20 раз, а бета-излучение в 10 раз опаснее, чем гамма-излучения. Знание величины поглощенной дозы недостаточно для точного предвидения ни степени трудности, ни вероятности возникновения эффектов поражения. Из-за этого введена эквивалентная доза.
Эквивалентная доза характеризует то, что разные виды ионизирующего излучения во время облучения организма одинаковыми дозами приводят к разному биологическому эффекту. Это связано с неодинаковой удельной плотностью ионизации, вызванной разными видами излучений. Так, количество ионов, которые образуются под действием излучения на единице пути в тканях, то есть плотность ионизации альфа-частицами, в сотни раз выше, чем гамма-лучей. Поэтому введены понятия " относительная биологическая активность ", которая показывает соотношение поглощенных доз разных видов излучения, которые вызовут одинаковый биологический эффект. Если условно принять биологическую эффективность гамма- и бета-лучей за единицу, то для альфа-частиц она будет равняться десяти, а для медленных и быстрых нейтронов соответственно пяти и двадцати. Эквивалентная доза облучения используется для оценки действия излучения на живые организмы, прежде всего человека и животного.
Единицей эквивалентной дозы в системе СИ является зиверт (Зв, Sv). Один зиверт равняется поглощенной дозе в 1 Дж/кг (для рентгеновского, гамма- и бета-излучений).
Для учета биологической эффективности излучений введена внесистемная единица поглощенной дозы - биологический эквивалент рентгена (бэр). Один бэр - это доза любого вида излучения, которая создает в организме такой же биологический эффект, как единица рентгеновского или гамма-излучение.
Доза в бэрах выражается тогда, когда необходимо оценить общебиологический эффект независимо от типа действующих излучений. Соотношение между единицей эквивалентной дозы в системе СИ и внесистемной единицей: 1 Зв = 100 бэр, 1 бэр = 0,01 Зв. Чтобы рассчитать неравномерность поражения от разных видов излучений, введен " коэффициент качества ", на который необходимо перемножить величину поглощенной дозы от определенного вида излучения, чтобы получить эквивалентную дозу. Все международные и национальные нормы установлены в эквивалентной дозе облучения.
Единицей мощности эквивалентной дозы в системе СИ является зиверт в секунду (Зв/с, Sv/s), а внесистемной единицей является бэр в секунду (бэр/с) соотношение между ними: 1 Зв/с = 100 бэр/с, 1 бэр/с = 0,01 Зв/с.